# The Role of DNA in Kinship Analysis 

Kristen E. Lewis, Ph.D.
National Institute of Standards and Technology Biochemical Science Division
Applied Genetics Group - DNA Biometrics Project

## Lockheed Martin BEACON Lecture April 14, 2010

## Outline

- Forensic DNA analysis / DNA biometrics
- Complex kinship testing
- Kinship analysis software


# Forensic DNA Analysis 

DNA Biometrics

## Steps in Forensic DNA Analysis

Usually 1-2 day process (a minimum of $\sim 8$ hours)


## Forensic DNA Typing

Example of 6 markers + sex-typing marker


A common set of 13 Short Tandem Repeat (STR) markers ("CODIS loci") are genotyped to search state and national databases

## DNA Typing as a Biometric

## Advantages

- High level of accuracy (Gold Standard)
- Solid foundation of forensic DNA testing
(pop stats, molecular biology, protocols, training, court acceptance, education)
- Kinship analysis (unique to DNA)
- Potential use for:
- Phenotype (traits; eye/hair color)
- Ancestry

Challenges

- Expensive
- Time consuming
- Sample collection (invasive, stability issues)
- Technical expertise required for analysis
- Low level template, mixtures, PCR inhibition
- Policy/Privacy/Ethical issues


## Interest in Rapid DNA Typing

- DoD (field testing, rapid intelligence, mass fatalities)
- DHS (kinship determination, border security, immigration)
- DoJ (law enforcement, initial information)
- Industry (security, authentication)


## Rapid DNA Typing Systems under Development

- Systems are currently under development and are not yet commercially available
- Network Biosystems (Woburn, MA) http://www.netbio.com
- MicroLab Diagnostics and Lockheed Martin (Charlotesville,Va) http://www.microlabdiagnostics.com
- Microchip Biotechnologies, Inc. (Pleasanton, CA) http://www.microchipbiotech.com
- Forensic Science Service (UK)
http://www.forensic.gov.uk/


## Complex Kinship <br> Analysis



## Using DNA to Detect Genetic Relationships

- DNA profiles can be used to evaluate the probability of a specific kinship relationship
- Various situations
- Paternity (civil and criminal)
- Familial searching
- Mass disasters
- Unidentified human remains
- Inheritance
- Immigration
- Military intelligence



## Human Genome and Inheritance



## Autosomal Paternity Example

## Alleged Father



Focusing on 5 markers...

## Autosomal Paternity Example

## Alleged Father



Focusing on 5 STR markers...

## Different Inheritance Patterns

## Lineage Markers

CODIS STR Loci


Autosomal (passed on in part, from all ancestors)


Y-Chromosome
(passed on complete, but only by sons)


Mitochondrial (passed on complete, but only by daughters)

## Mutation of STR Markers



## Mutation of STR Markers



- Typically observe 1-step mutations (99\%)
- Gain or loss of repeat unit possible
- Average STR mutation frequency $=0.001$
- Must factor in mutation for kinship analyses


## Extended Family Samples

- 6 sets of family samples (3-4 generations)
- $\mathrm{N}=165$ (total samples)
- Loci examined
- 43 autosomal loci (13 CODIS + 2, 25 NIST loci, PowerPlex ESI 17, NGM loci)
- 17 Y -chromosomal loci (Yfiler loci)
- 15 X -STRS (AFDIL collaboration)
- Mitochondrial control region (to be typed)
- These samples are being used to illustrate the value (or limitations) of current and additional marker systems


## Extended Family Samples



Family Pedigree with STR Marker D8S1179

## Examine Basic Allele Sharing

| Marker |  |  |  |  |  | Father |  |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | CSF1PO | 10 | 10 |  | Mother |  |  |
| 2 | TPOX | 8 | 8 |  | 12 |  |  |
| 3 | TH01 | 6 | 6 |  | 8 | 10 |  |
| 4 | VWA | 17 | 18 |  | 17 | 9 |  |
| 5 | D16S539 | 11 | 13 |  | 8 | 9 |  |
| 6 | D7S820 | 9 | 9 |  | 8 | 12 |  |
| 7 | D13S317 | 11 | 14 |  | 8 | 12 |  |
| 8 | D5S818 | 12 | 13 |  | 11 | 13 |  |
| 9 | FGA | 21 | 22 |  | 21 | 25 |  |
| 10 | D8S1179 | 12 | 14 |  | 13 | 14 |  |
| 11 | D18S51 | 14 | 16 |  | 14 | 17 |  |
| 12 | D21S11 | 28 | 30 |  | 31 | 32.2 |  |
| 13 | D3S1358 | 16 | 17 |  | 17 | 17 |  |
| 14 | D2S1338 | 22 | 23 |  | 23 | 25 |  |
| 15 | D19S433 | 12 | 14 |  | 14 | 14 |  |


|  | Marker |  | Father | Child |  | Mother |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | CSF1PO | 1010 | 10 | 10 | 10 | 12 |
|  | 2 | TPOX | 88 | 8 | 8 | 8 | 10 |
|  | 3 | TH01 | 66 | 6 | 6 | 6 | 9 |
|  | 4 | vWA | $17 \quad 18$ | 17 | 17 | 17 | 20 |
| E | 5 | D16S539 | $11 \quad 13$ | 9 | 13 | 8 | 9 |
|  | 6 | D7S820 | 99 | 8 | 9 | 8 | 12 |
| A+math | 7 | D13S317 | 1114 | 8 | 14 | 8 | 12 |
|  | 8 | D5S818 | $12 \quad 13$ | 11 | 13 | 11 | 13 |
|  | 9 | FGA | 2122 | 21 | 25 | 21 | 25 |
|  | 10 | D8S1179 | 1214 | 14 | 14 | 13 | 14 |
|  | 11 | D18S51 | 1416 | 14 | 17 | 14 | 17 |
|  | 12 | D21S11 | 2830 | 28 | 31 | 31 | 32.2 |
|  | 13 | D3S1358 | $16 \quad 17$ | 17 | 17 | 17 | 17 |
|  | 14 | D2S1338 | $22 \quad 23$ | 23 | 23 | 23 | 25 |
|  | 15 | D19S433 | 1214 | 12 | 14 | 14 | 14 |

The child inherits an allele from each parent

## Siblings and Avuncular

| Marker |  |  |  | Brother | Sister |
| ---: | ---: | :---: | :---: | :---: | :---: |
| 1 | CSF1PO | 10 | 10 | 10 | 12 |
| 2 | TPOX | 8 | 8 | 8 | 10 |
| 3 | TH01 | 6 | 6 | 6 | 9 |
| 4 | VWA | 17 | 17 | 17 | 20 |
| 5 | D16S539 | 9 | 13 | 9 | 11 |
| 6 | D7S820 | 8 | 9 | 9 | 12 |
| 7 | D13S317 | 8 | 14 | 11 | 12 |
| 8 | D5S818 | 11 | 13 | 11 | 12 |
| 9 | FGA | 21 | 25 | 21 | 25 |
| 10 | D8S1179 | 14 | 14 | 13 | 14 |
| 11 | D18S51 | 14 | 17 | 14 | 14 |
| 12 | D21S11 | 28 | 31 | 30 | 32 |
| 13 | D3S1358 | 17 | 17 | 16 | 17 |
| 14 | D2S1338 | 23 | 23 | 23 | 25 |
| 15 | D19S433 | 12 | 14 | 14 | 14 |


| Marker |  |  |  | Uncle |  |
| :---: | ---: | :---: | :---: | :---: | :---: |
| Nephew |  |  |  |  |  |
| 1 | CSF1PO | 10 | 10 | 11 | 12 |
| 2 | TPOX | 8 | 8 | 8 | 10 |
| 3 | TH01 | 6 | 6 | 6 | 9.3 |
| 4 | VWA | 17 | 18 | 16 | 17 |
| 5 | D16S539 | 11 | 13 | 11 | 13 |
| 6 | D7S820 | 9 | 9 | 9 | 11 |
| 7 | D13S317 | 11 | 14 | 11 | 12 |
| 8 | D5S818 | 12 | 13 | 12 | 12 |
| 9 | FGA | 21 | 22 | 20 | 24 |
| 10 | D8S1179 | 12 | 14 | 10 | 13 |
| 11 | D18S51 | 14 | 16 | 13 | 13 |
| 12 | D21S11 | 28 | 30 | 27 | 31 |
| 13 | D3S1358 | 16 | 17 | 16 | 18 |
| 14 | D2S1338 | 22 | 23 | 18 | 22 |
| 15 | D19S433 | 12 | 14 | 14 | 14 |

## Evaluating Relatedness

- Examining or counting shared alleles is qualitative
- Likelihood ratio can be used to help quantify the information
$L R=\frac{\text { Probability of data under one hypothesis }}{\text { Probability of data under alternative hypothesis }}$


## Likelihood Ratio Equations Motherless Paternity Case

| Genotype Combinations at One Marker |  | Likelihood Ratio |
| :---: | :---: | :---: |
| Child's Genotype | Alleged Father's Genotype |  |
| $A A$ | $A A$ | $1 / p_{A}$ |
| AA | BB | 0 |
| AA | AB | $1 / 2 p_{A}$ |
| AA | BC | 0 |
| AB | AB | $\left(p_{A}+p_{B}\right) / 4 p_{A} p_{B}$ |
| AB | AC | $1 / 4 p_{A}$ |
| AB | CD | 0 |

Multiply LR across all loci $L R=\frac{\text { Probability of data if the alleged father is the true father }}{\text { Probability of data if an unrelated man is the true father }}$

## Allele Sharing Probabilities

| Relationship | 0 alleles | 1 alleles | 2 alleles |
| :--- | :---: | :---: | :---: |
| Parent-child | 0 | 1 | 0 |
| Full siblings | $1 / 4$ | $1 / 2$ | $1 / 4$ |
| Half siblings | $1 / 2$ | $1 / 2$ | 0 |
| Cousins | $3 / 4$ | $1 / 4$ | 0 |
| Uncle-nephew | $1 / 2$ | $1 / 2$ | 0 |
| Grandparent-grandchild | $1 / 2$ | $1 / 2$ | 0 |

Half siblings, uncle-nephew, and grandparent-grandchild are genetically identical.

## Complex Kinship Testing



The statistical power for complex kinship testing significantly decreases compared to one-to-one matching

## Requirements:

- Genotypes of individuals being tested
- Allele frequencies for the loci involved in the testing
- A Hypothesis!
- Basic statistical equations are known
- Difficult to identify distant relationships
- Discriminatory power comes from multiple family members and the use of informative markers


## Likelihood Ratios with 15 Loci



LR calculations were performed with GeneMarker ${ }^{\circledR}$ HIDv1.90

## Likelihood Ratios with 15 Loci



LR calculations were performed with GeneMarker ${ }^{\circledR}$ HIDv1.90

# Benefit of Additional Loci Likelihood Ratios with 40 Loci 

|  | 15 | 40 | 15 | 40 | 15 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | LR for 34 \& 19 | LR for 34 \& 19 | LR for 18 \& 19 | LR for $18 \& 19$ | LR for 34 \& 10 | LR for $34 \& 10$ |
| Parent-Child | $1.28 \mathrm{E}+06$ | $6.68 \mathrm{E}+16$ | 9.08E+05 | 0.00E+00 | $0.00 \mathrm{E}+00$ | 0.00E+00 |
| Full Siblings | $3.22 \mathrm{E}+04$ | $5.73 \mathrm{E}+12$ | $2.76 \mathrm{E}+07$ | $1.57 \mathrm{E}+19$ | 6.07E-03 | $3.30 \mathrm{E}+03$ |
| Half Siblings | $7.38 \mathrm{E}+03$ | $8.63 \mathrm{E}+11$ | 4.89E+04 | $4.99 \mathrm{E}+12$ | 6.65E-01 | 8.98E+05 |
| Cousins | $1.95 \mathrm{E}+02$ | 1.32E+08 | 8.96E+02 | 1.05E+09 | $1.52 \mathrm{E}+00$ | $2.17 \mathrm{E}+04$ |
| Uncle-Nephew | $7.38 \mathrm{E}+03$ | $8.63 \mathrm{E}+11$ | 4.89E+04 | $4.99 \mathrm{E}+12$ | 6.65E-01 | $8.98 \mathrm{E}+05$ |
| GrandparentGrandchild | 7.38E+03 | 8.63E+11 | 4.89E+04 | $4.99 \mathrm{E}+12$ | 6.65E-01 | 8.98E+05 |
|  |  |  |  |  |  |  |

LR calculations were performed with GeneMarker ${ }^{\circledR}$ HIDv1.90

## What would Mitochondrial sequencing tell you?



Mitochondrial DNA is maternally inherited

## What would a Y-STR test tell you?

Square = male Circle = female


| Y STR | Allele |
| :---: | :---: |
| DYS456 | 17 |
| DYS389I | 13 |
| DYS390 | 24 |
| DYS389II | 29 |
| DYS458 | 18 |
| DYS19 | 14 |
| DYS385 | 11 |
| DYS385 | 15 |
| DYS393 | 13 |
| DYS391 | 11 |
| DYS439 | 13 |
| DYS635 | 23 |
| DYS392 | 13 |
| Y_GATA_H4 | 12 |
| DYS437 | 15 |
| DYS438 | 12 |
| DYS448 | 19 |

All males in this specific linage have the identical Y-STR profile

## Likelihood Ratios with Y-STR Loci



Lineage markers may not be as statistically robust as autosomal markers, but they are lineage specific and can link distant relatives.

Frequency of Y-STR and mitochondrial DNA profiles in the NIST population database $(\mathrm{n}=572)$


Number of times a profile is observed in database
$96 \%$ of Y-STR profiles are unique
$84 \%$ of mtDNA profiles are unique

## Simulated Datasets





Probability of finding a true parent-offspring relative and the number of false positives (LR threshold $\geq 100=10^{2}$ )

| Loci | Probability of <br> true relative | Number of <br> false positives |
| :---: | :---: | :---: |
| 13 | 0.95 | 18 |
| 40 | 1.00 | 0 |

Based on a database of 100,000 individuals with U.S. allele frequencies.



Probability of finding a true full sibling relative and the number of false positives (LR threshold $\geq 100=10^{2}$ )

| Loci | Probability of <br> true relative | Number of <br> false positives |
| :--- | :---: | :---: |
| 13 | 0.70 | 5 |
| 40 | 0.97 | 0 |

Based on a database of 100,000 individuals with U.S. allele frequencies.



Probability of finding a true half sibling relative and the number of false positives (LR threshold $\geq 10=10^{1}$ )

| Loci | Probability of <br> true relative | Number of <br> false positives |
| :--- | :---: | :---: |
| 13 | 0.73 | 4,570 |
| 40 | 0.83 | 607 |

Based on a database of 100,000 individuals with U.S. allele frequencies.

## Immigration: <br> Kinship Analysis as a DNA Biometric

## US Citizenship and Immigration Services (USCIS)

- Immigration cases
- 1,107,126 obtained legal permanent residence in US in 2008
- 103,456 were relatives of US alien resident
- Refugee/asylum cases
- 400 applications processed per day
- 60,108 refugees admitted in 2008
- 34,753 were relatives of applicant
- Support relationship claim with interview and documents

- Fraudulent claims (79\%)


## Current: Optional DNA Testing for Immigration

- DNA may be used if interview and documents are insufficient
- Number of cases:
~ One dozen accredited labs in US
~ 3,500/yr for small lab, ~10,000/yr large lab
- Time: Minimum two-day lab analysis; up to six months to coordinate with embassy
- Cost: \$600-\$1500 for private lab testing
- Applicant pays (usually US resident, "anchor")


## Future: Requiring DNA for Immigration Testing

- Easy, rapid collection
- Trained embassy/field office staff vs. accredited physician
- Buccal swab
- Faster, cheaper testing
- Not necessary to have one-hour turnaround time
- Relationship in question could dictate the markers to be analyzed
- Analysis
- Expert system may not give definitive answer
- May help to flag DNA quality or genotyping issues
- Analysts trained in statistics and kinship analysis may be necessary
- Perform on-site or in US government lab? Outsource to private lab?
- Many more questions...
- Volume? Cost? Population allele frequencies? Level of certainty?


## Analysis Software

## Expert Systems

- Programs that interpret data as a human expert would
- Expert systems for forensic typing (NDIS-approved)
- FSS- ${ }^{3}$ (FSS/Promega)
- GeneMapper ID-X (Applied Biosystems)
- TrueAllele (CyberGenetics)
- Expert systems for kinship analysis
- No program has been designated as an expert system for automated kinship determination


## Single-Source Genotyping

## Complex Kinship Analysis



Who defines hypotheses?

Threshold?

Inconclusive?
Missing
relatives?

## Kinship Analysis Software

- Public/commercial availability

1. GeneMarker ${ }^{\circledR}$ HID v1.90 (SoftGenetics)
2. DNA-VIEW ${ }^{\text {TM }}$ v29.11 (Charles Brenner)
3. LISA (Future Technologies Inc.)
4. KIn CALc v3.1 (CA DOJ)

- Restricted availability

5. CODIS 6.0 (FBI)

- Coming soon

6. FSS-ibd (Forensic Science Service)

## (1) GeneMarker ${ }^{\circledR}$ HID

- Fragment analysis program, primarily
- Kinship module
- Draw pedigree tree (show inheritance conflicts)
- LR approach
- Pairwise analysis only
- Databases of allele frequencies, loci
- Autosomal STRs, Y-STRs
- No mitochondrial DNA


## (2) DNA-VIEW ${ }^{\text {TM }}$

- DOS, command-line interface
- Kinship modules
- Paternity and complex kinship analyses
- Pedigree simulations
- Define relationships (pedigree tree) with symbols
- Use up to 10 relatives in analysis
- LR approach
- Databases of allele frequencies, loci
- Autosomal STRs or Y-STRs
- No mitochondrial DNA for kinship
- Mutation considered

[^0]
## Immigration Scenario with DNA-VIEW

Is " $D$ " the sister of " $C$," as is claimed?





## (3) LISA

- Laboratory Information Systems Application
- Originally developed for AFDIL
- Graphical interface for DNA-VIEW ${ }^{\text {TM }}$
- Uses Progeny ${ }^{\circledR}$ to draw pedigree trees
- Autosomal STRs, Y-STRs, mtDNA


## (4) KIn CALc

- Excel, macro-driven program
- Kinship module
- Define relationships on pedigree tree
- Use up to 10 relatives in analysis
- LR approach based on DNA-VIEW algorithms
- No mutation calculation (flags mutation)


## KIn CALc

## Pedigree



Alleged relationship to the TEST individual


DNA-VIEW pedigree example...


## KIn CALc

Combined likelihood ratio


Per locus
likelihood ratios

## (5) CODIS 6.0

- FBI-developed program for missing persons and unidentified human remains identification
- Kinship module
- Draw pedigree tree to define relationships
- Joint Pedigree LR
- Ranks putative relatives
- Database of allele frequencies, loci
- Autosomal STRs, Y-STRs, mtDNA
- Metadata in v. 7.0


## (6) FSS-ibd

- Automated relationship testing application
- Graphical user interface
- Simple paternity to complex kinship
- LR approach
- Database of allele frequencies, loci
- Provided and user-defined
- Autosomal STRs
- Mutation considered

FSS: http://www.forensic.gov.uk/

## FSS-ibd



## Software Validation

Validation information: http://www.cstl.nist.gov/strbase/validation.htm

- Developmental validation (manufacturer)
- Internal validation (individual labs)

| Rapid DNA |
| :---: |
| Testing Platform |



Expert system (data analysis)


Kinship Software (stats and conclusion)

## Internal Validation Considerations for Kinship Software

- Who should recommend validation guidelines for DNA Biometrics and kinship analysis?
- For forensic typing: Scientific Working Group on DNA Analysis Methods
- For paternity testing: AABB
- Define case examples to test software
- Paternity trios, deficient cases, complex kinship, false relationships
- How many cases are enough?
- Real data, simulated, or both?
- Technical considerations specific to testing
- Marker systems, allele frequency data, mutation, LR threshold, etc.
- How do you know your answer is correct?
- Compare to hand-calculated answer or to another kinship program?

Drábek J, Validation of software for calculating the likelihood ratio for parentage and kinship, FSI:Genetics 3 (2009) 112-118

## Conclusions

- DNA is a powerful tool to confirm or refute alleged familial relationships
- Important to define specific kinship questions
- Simulations with appropriate allele frequency databases can model expected LR values for specific relationships
- Software must be "fit for purpose"
- Can there be an expert system for kinship analysis?
- What are the validation parameters? Who should define validation guidelines?


## Thank you for your attention

Acknowledgments:
Dr. Peter Vallone
Erica Butts

Funding:
NRC - Postdoctoral Fellowship to Kristen Lewis

FBI - Evaluation of Forensic DNA
Typing as a Biometric Tool
NIJ - Interagency Agreement with the Office of Law Enforcement Standards

## Contact:

kristen.lewis@nist.gov 301-975-5205
peter.vallone@nist.gov
301-975-4872


[^0]:    Dr. Charles Brenner: http://dna-view.com/

