Identification of Distant Relatives Using Linked Autosomal STRs

Kristen E. Lewis, PhD

NRC Postdoctoral Fellow NIST Applied Genetics Group

Melanie Caserza, Tom Walsh, and Mary-Claire King University of Washington Genome Sciences

DNA Identification

Unlinked Markers

- Recombination
 CODIS loci
- Direct matching
- Paternity analysis

Linked Markers

- No recombination
 - Y-STRs
 - Mitochondrial DNA
 - X-STRs
 - Autosomal SNP haploblocks
 - Linked autosomal STRs
- Complex kinship analysis
- Historical identification
- Remains identification

Remains Identification

- American soldier
 missing since WWII
- Remains discovered in ocean near Australia (2002)

 Identified through mtDNA sequencing Humanitarian Identifications by the King Laboratory

- Children of the Disappeared (Argentina)
 - mtDNA sequencing
 - Kinship analysis
- Present case
 - Associate the alleged daughter with living members of the soldier's family
 - Infer paternity of the alleged father

A Question of Kinship

- Australian woman raised as soldier's posthumous daughter
- Baptismal certificate
- Confirm kinship for personal and legal reasons
- No autosomal DNA from remains
- No Y or mtDNA relationship

Approach

• Evaluate relatedness between alleged daughter and putative second cousins

 Likelihood ratio analysis using forensic autosomal STR loci

 Haplotype analysis using linked autosomal STR loci

Likelihood Ratio Analysis

40 autosomal STRs

- Identifiler (15)
- NIST 26plex (25)

LR = Probability of genotypes if 01 and putative 2nd cousin are 2nd cousins Probability of genotypes if 01 and putative 2nd cousin are unrelated

Hill, C.R., Butler, J.M., Vallone, P.M. (2009) A 26plex autosomal STR assay to aid human identity testing. *J. Forensic Sci.* 54(5): 1008-1015

Likelihood Ratio Analysis

40 autosomal STRs

- Identifiler (15)
- NIST 26plex (25)

Likelihood ratios for comparisons of:

- Putative 2nd cousins ranged from **0.5 to 0.9**
- Undisputed 2nd cousins ranged from 0.5 to 3.9

Probability of sharing one allele identical by descent = 1/16

Autosomal Haplotype Strategy

Profile Frequency

0 out of 960 controls could have a genotype consistent with the observed haplotype

95% confidence limit from zero proportion

 $= 1 - \alpha^{(1/N)}$

where $\alpha = 0.05$ and N = 1920 chromosomes

= 0.0016

Likelihood Ratio

LR = Probability of profiles if 01 and 05/06 are related Probability of profiles if 01 and 05/06 are unrelated

$$LR = \frac{1}{0.0016} = 641$$

641 times more likely to observe the shared haplotype if the woman is related to this family than unrelated

Summary

- Defined a region of linked autosomal alleles
 - Constituted a haplotype in the known brothers
 - Shared by alleged daughter and brothers (putative 2nd cousins)
- Haplotype is rare in ancestry-matched population
 Suggestive of identity by descent and not identity by state
- Region has not been broken up by recombination in the generations separating the tested relatives
- As many independent chromosomes as necessary could be evaluated

Linked Autosomal Markers

- Relatedness of persons separated by:
 - Multiple historical generations
 - War
 - Natural disaster
- Useful for particular identification or kinship cases
 - Not for direct matching
- Use when lineage markers are uninformative

Acknowledgments

University of Washington

Mary-Claire King Tom Walsh Melanie Caserza

NIST Applied Genetics Group John Butler Pete Vallone Becky Hill

Questions

Kristen Lewis kristen.lewis@nist.gov