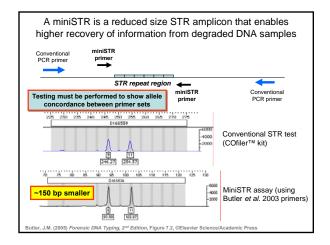
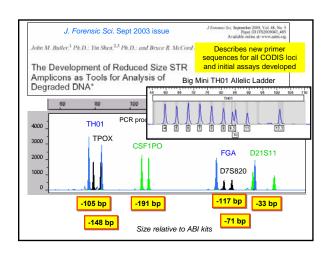


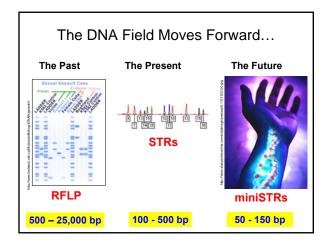
Where Is the Future Going for DNA Technology That Can Be Applied to Forensic DNA Typing?

Constant state of evolution (like computers)

- · Higher levels of multiplexes
- More rapid DNA separations
- Better data analysis software
- New DNA Markers

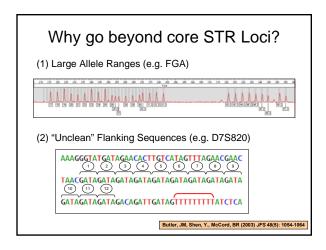


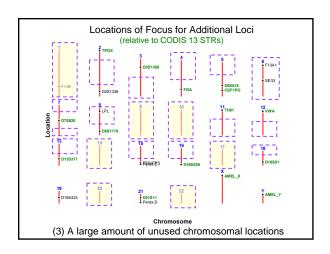

Status of Genetic Marker Systems Used in Forensic DNA Testing

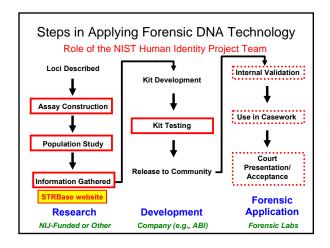

- STRs widely used in national databases today
- miniSTRs used in research and WTC; new MiniFiler kit just being released
- mtDNA used in specialty labs for highly degraded specimens
- Y-STRs growing use due to kits now available
- SNPs research; likely to be limited in use

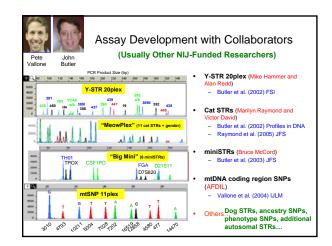
Technology: NIST Research Programs

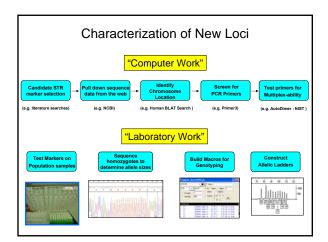
- miniSTRs
- Y-chromosome STRs
- mtDNA
- SNPs
- · qPCR for DNA quantitation
- DNA stability studies
- · Variant allele characterization and sequencing
- · Software tools
- Expert System review
- · Assay development with collaborators

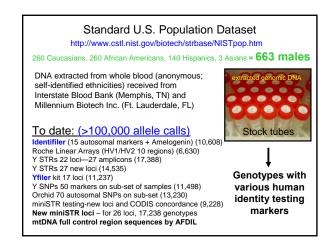


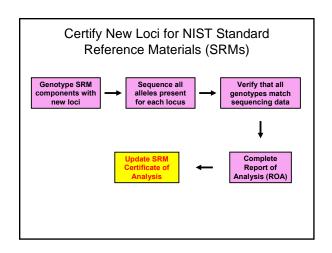


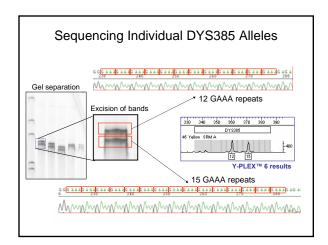


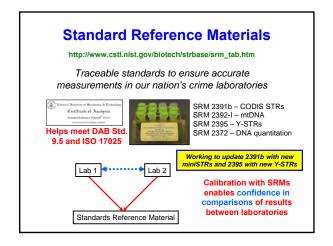

How would additional loci be useful?


- Obtaining additional information with degraded DNA samples (miniSTRs)
- Resolving common genotypes within populations
- · Kinship analysis

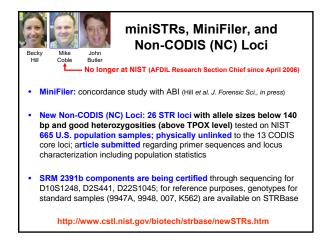


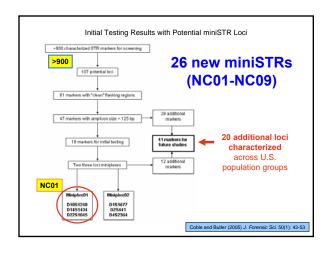


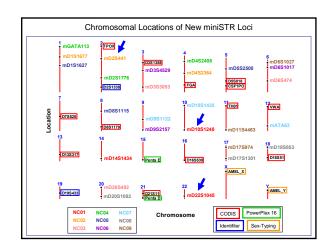


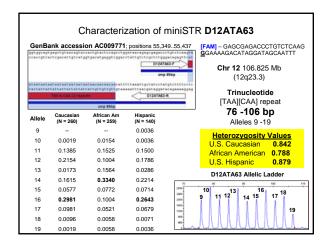


NIST Work with Father-Son Samples Samples obtained from paternity testing laboratory as buccal swabs, extracted with DNA-IQ, quantified, diluted to 0.5 ng/uL To-date: 100 father-son pairs of U.S. Caucasian, African American, Hispanic, and Asian (800 samples) Verified autosomal STR allele sharing with Identifiler (QC for gender and potential sample switches) Typed with Yfiler (17 Y-STRs) – examined mutations





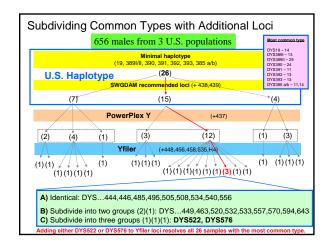


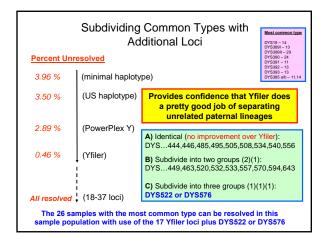


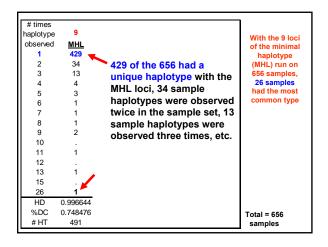
Value of Additional MiniSTR Loci

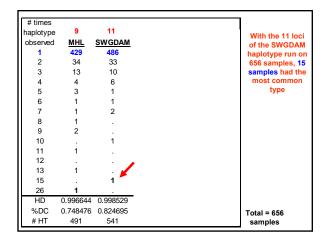
Locus	N	Heterozygosity (Overall)	Rank	African American	Caucasian	Hispanic
ATA63 (D12)	659	0.829	2	0.788	0.842	0.879
D10S1248 (NC01)	663	0.792	3	0.825	0.785	0.743
D22S1045 (NC01)	663	0.784	4	0.817	0.785	0.721
D2S441 (NC02)	660	0.774	5	0.798	0.780	0.721
D10S1435	663	0.766	6	0.798	0.770	0.700
D2S1776	654	0.763	7	0.740	0.801	0.734
D3S4529	660	0.761	8	0.752	0.723	0.829
D6S474	648	0.761	9	0.765	0.802	0.679
D5S2500	664	0.747	10	0.757	0.747	0.729
D1S1627	660	0.746	11	0.783	0.737	0.693
D1S1677 (NC02)	660	0.746	12	0.743	0.749	0.743
D6S1017	664	0.740	13	0.807	0.698	0.693
D3S3053	648	0.739	14	0.713	0.724	0.814
D9S1122	659	0.734	15	0.753	0.742	0.686
D17S974	664	0.732	16	0.757	0.702	0.743
D11S4463	664	0.730	17	0.780	0.676	0.743
D4S2408	654	0.722	18	0.752	0.709	0.691
D18S853	664	0.711	19	0.772	0.645	0.721
D20S1082	664	0.696	20	0.792	0.653	0.600
D14S1434 (NC01)	663	0.696	21	0.685	0.721	0.650
D20S482	648	0.691	22	0.673	0.689	0.729
GATA113 (D1)	654	0.668	23	0.673	0.632	0.727
D8S1115	664	0.663	24	0.629	0.660	0.729
D17S1301	664	0.649	25	0.626	0.717	0.564
D4S2364 (NC02)	660	0.511	26	0.385	0.551	0.664

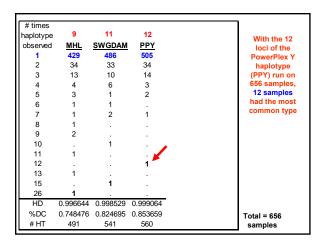
Most forensic DNA laboratories (certainly in the U.S.) will only use commercially available kits due to quality control issues Using these kits as a starting point, are there additional loci that would be beneficial in separating samples with common types, which could be advocated to companies for

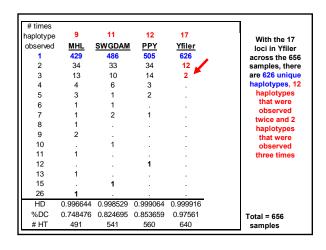

Going Beyond Commercial Y-STR Kits

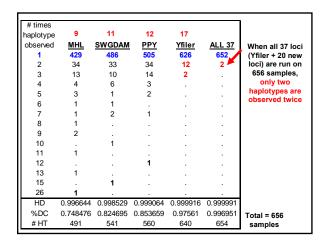

Is it possible to regularly **resolve individuals from the same paternal lineage** (e.g., fathers and sons) if enough Y-STRs are examined?

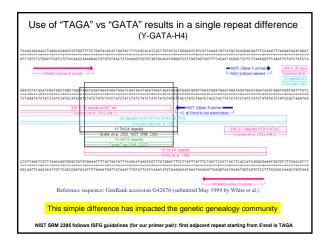

possible future adoption in Y-STR kits?

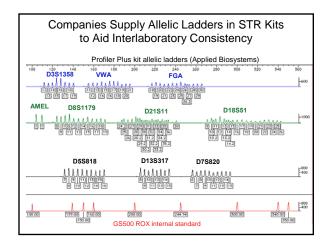

Data Set Used to Examine Common Types

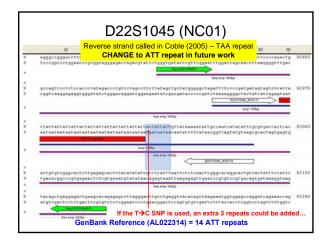

- Yfiler kit (17 Y-STR loci) run on all NIST male U.S. population samples
 - makes up ~20% of Applied Biosystems database
 - submitted to the YHRD
- Additional 20 Y-STR loci run on full set of NIST population samples (and several less polymorphic ones only on subset of samples)
 - Butler, J.M., Decker, A.E., Vallone, P.M., Kline, M.C. (2006) Allele frequencies for 27 Y-STR Loci with U.S. Caucasian, African American, and Hispanic samples. Forensic Sci. Int. 156:250-260.



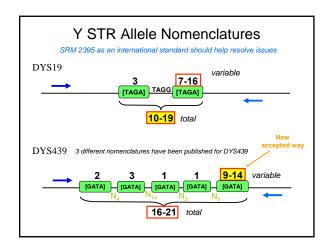



Challenges of Defining Nomenclature for New Loci


STR Repeat Nomenclature


International Society of Forensic Genetics (ISFG) – Int. J. Legal Med. (1997) 110:175-176

- For sequences within genes, use the coding strand
- For other sequences, select the first GenBank database entry or original literature description
- Define the repeat sequence which will provide the largest number of consecutive repeats
- If two sequences are repeated, include both motifs in determining the repeat number
- Microvariants: should be designated by the number of complete repeats and the number of base pairs of the partial repeat separated by a decimal point (Int. J. Legal Med. 1994, 107:159-160) e.g. TH01 allele 9.3

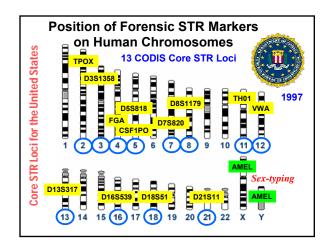

miniSTR Allele Nomenclature Changes

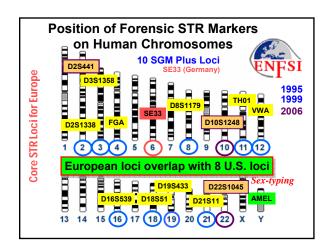
Due to further sequence analysis conducted in summer and fall of 2006

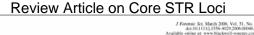
- D10S1248 reduced by -1 repeat
- D22S1045 increased by +3 repeats
- D2S441 kept the same
- · D14S1434 reduced by -4 repeats
- D1S1677 increased by +1 repeat
- · D4S2364 reduced by -1 repeat

Butler, J.M. and Coble, M.D. (2007) Authors' Response to Letter to Editor [regarding nomenclature for new miniSTR locus D10S1248]. *J. Forensic Sci.* 52(2): 494.

See also .../strbase/miniSTR.htm#Nomenclature_Errata

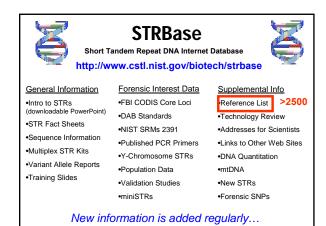


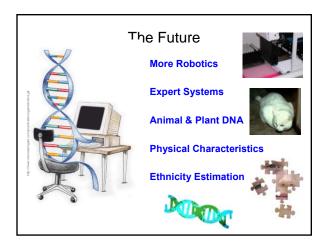

Uses of Additional Loci in the Forensic Community

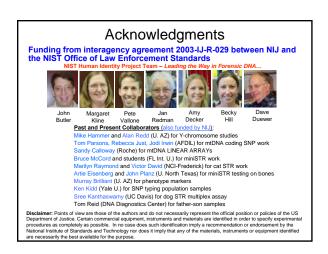

- All STR loci
 - Missing persons investigations
 - · Identification of mass disaster victims
 - Paternity testing
- Y-STR specific
 - Kinship analysis
 - · Human migration and evolutionary studies
 - · Historical and genealogical research

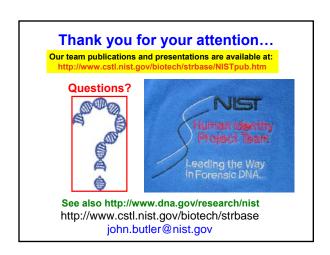
Publications on new loci

- Coble, M.D. and Butler, J.M. (2005) Characterization of new miniSTR loci to aid analysis of degraded DNA. *J. Forensic Sci.* 50: 43-53.
- Butler, J.M., Decker, A.E., Vallone, P.M., Kline, M.C. (2006) Allele frequencies for 27 Y-STR tool with U.S. Caucasian, African American, and Hispanic samples. Forensic Sci. Int. 156:250-260.
- Coble, M.D., Hill, C.R., Vallone, P.M., Butler, J.M. (2006) Characterization and performance of new miniSTR loci for typing degraded samples. Progress in Forensic Genetics 11, Elsevier Science: Amsterdam, The Netherlands, International Congress Series 1288, 504-506.
- Decker, A.E., Kline, M.C., Vallone, P.M., Butler, J.M. (2007) The impact of additional Y-STR loci on resolving common haplotypes and closely related individuals. FSI Genetics, in press.
- Hill, C.R., Coble, M.D., Butler, J.M. (2007) Characterization of 26 miniSTR loci for improved analysis of degraded DNA samples. submitted.




John M. Butler, 1 Ph.D.


Genetics and Genomics of Core Short Tandem Repeat Loci Used in Human Identity Testing


Journal of Forensic Sciences 2006, 51(2): 253-265

- Reviews STR kits, genomic locations, mutation rates, potential genetic linkage, and known variant alleles for autosomal STR and Y-STR loci
- Covers characteristics of 18 autosomal loci (13 core CODIS loci, D2, D19, Penta D, Penta E, SE33) and 11 SWGDAM-recommended Y-STR loci

