
Next Generation Sequencing on the Ion Torrent PGM: New SNP Typing Applications

Future Trends in Forensic DNA Technology

August 6, 2014

Kevin Kiesler, M.S.

Research Biologist, Applied Genetics Group National Institute of Standards and Technology

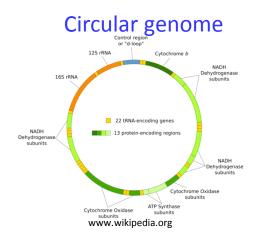
Disclaimer

- Forensic DNA research conducted at NIST is supported by an interagency agreement between the National Institute of Justice and the NIST Law Enforcement Standards Office.
- Points of view in this document are those of the authors and do not necessarily represent the official position or policies of the U.S. Department of Commerce. <u>Certain</u> <u>commercial equipment, instruments, and materials are</u> <u>identified in order to specify experimental procedures as</u> <u>completely as possible.</u>
- In no case does such identification imply a
 recommendation or endorsement by NIST, nor does it imply
 that any of the materials, instruments, or equipment
 identified are necessarily the best available for the
 purpose.

Outline

- Forensic DNA markers
 - Single Nucleotide Polymorphisms (SNPs)
- Next generation sequencing (NGS)
 - Personal Genome Machine (PGM) workflow
- Experimental data
 - HID-Ion Ampliseq Identity Panel
 - HID-Ion Amplised Ancestry Panel

Forensic DNA Markers


- Short Tandem Repeats (STRs)
 - PCR fragment-length polymorphisms
- Mitochondrial DNA (mtDNA)
 - Sanger sequencing
- Single Nucleotide Polymorphisms (SNPs)

Capillary electrophoresis electropherogram trace

Forensic DNA Markers

- Short Tandem Repeats (STRs)
 - PCR fragment-length polymorphisms
- Mitochondrial DNA (mtDNA)
 - Sanger sequencing
- Single Nucleotide Polymorphisms (SNPs)

Mitochondria Summ ORJungTEM 1/7/0 REMF

http://remf.dartmouth.edu/images/mammalianLungTEM/source/8.html http://www.orchidcellmark.ca

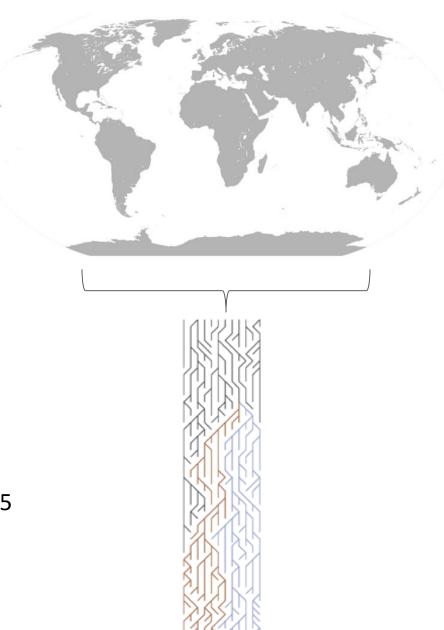
Maternally inherited

Forensic DNA Markers

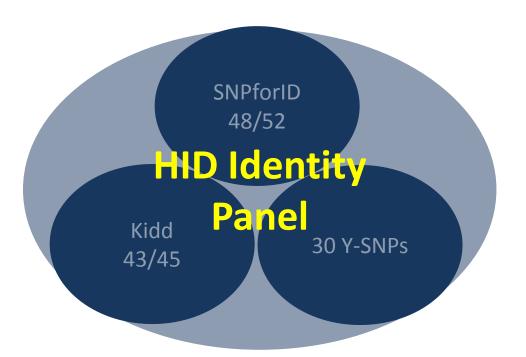
- Short Tandem Repeats (STRs)
 - PCR fragment-length polymorphisms
- Mitochondrial DNA (mtDNA)
 - Sanger sequencing
- Single Nucleotide Polymorphisms (SNPs)

Most methods are low throughput and/or require a lot of DNA.

NGS can analyze many SNPs for many samples in one sequencing run.


Categories of SNPs

- Individual Identification (IISNP)
- Ancestry Informative (AISNP)
- Lineage Informative (LISNP)
- Phenotype Informative (PISNP)


SNP Information

- Individual Identification
 - Low Fixation Index (F_{ST}) among worldwide populations
 - Alleles are evenly distributed
 - Balancing has occurred in all populations
 - High heterozygosity
 - e.g. AA = 0.25, AG = 0.5, GG = 0.25

HID-Ion Ampliseq Identity Panel (version 2.3)

- 90 autosomal SNPs
 - SNPforID 52 (Phillips et al. 2007)
 - Kidd Lab 45 (Pakstis et al. 2010)
- 30 Y-chromosome SNPs
 - Hammer Lab (Karafet et al. 2008)
- RMP ≈ 4 x 10^{-36}

Hum Genet (2010) 127:315-324 DOI 10.1007/s00439-009-0771-1

ORIGINAL INVESTIGATION

SNPs for a universal individual identification panel

Andrew J. Pakstis · William C. Speed · Rixun Fang · Fiona C. L. Hyland · Manohar R. Furtado · Judith R. Kidd · Kenneth K. Kidd

Available online at www.sciencedirect.co

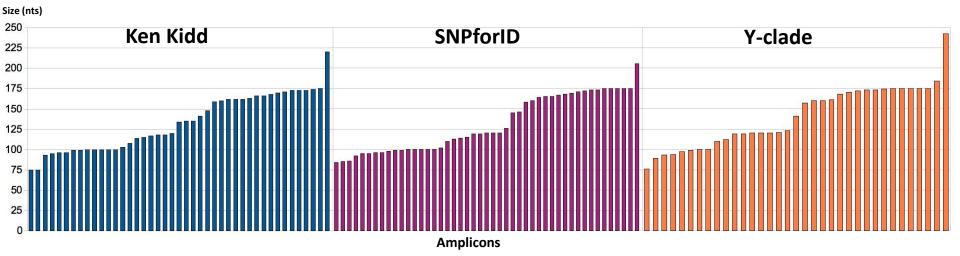
ScienceDirect

Forensic Science International: Genetics 1 (2007) 180–185

Evaluation of the Genplex SNP typing system and a 49plex forensic marker panel

C. Phillips ^{a,*}, R. Fang ^b, D. Ballard ^c, M. Fondevila ^a, C. Harrison ^c, F. Hyland ^b, E. Musgrave-Brown ^c, C. Proff ^d, E. Ramos-Luis ^a, B. Sobrino ^a, A. Carracedo ^a, M.R. Furtado ^b, D. Syndercombe Court ^c, P.M. Schneider ^d

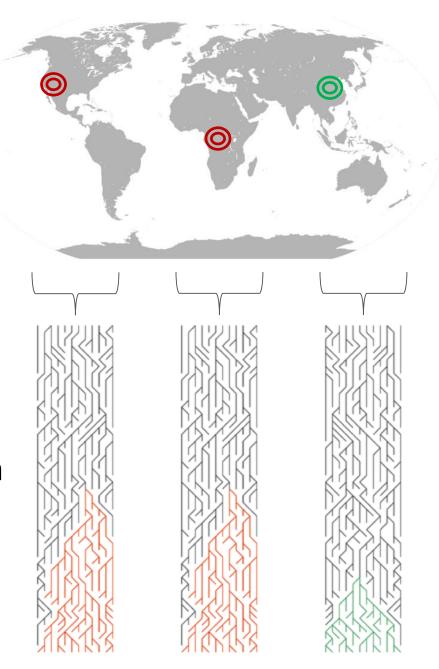
The SNPforID Consortium


New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree

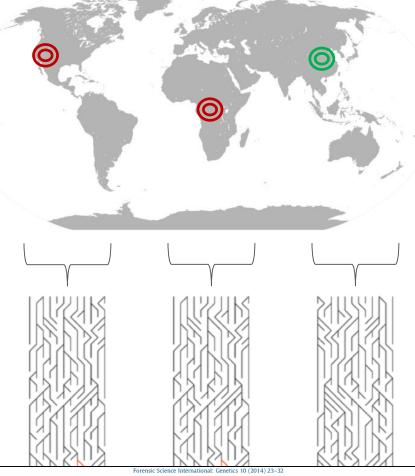
Tatiana M. Karafet, Fernando L. Mendez, Monica B. Meilerman, et al.

Genome Res. 2008 18: 830-838 originally published online April 2, 2008 Access the most recent version at doi:10.1101/gr.7172008

HID-Ion AmpliSeq[™] Identity Panel version 4.0


- 124 markers (for degraded samples, samples with loss of STR data)
 - 90 autosomal markers (1 shared)
 - 43 Ken Kidd¹
 - 48 SNPforID²
 - average autosomal marker size of 132 nts
 - 34 upper Y-clade markers³
 - average Y-clade marker size 141 nts

1 Pakstis, A. J., Speed, W. C., Fang, R., Hyland, F. C., Furtado, M. R., Kidd, J. R., & Kidd, J.


SNP Information

- Ancestry Markers
 - High Fixation Index (F_{ST})
 - Population specific fixation has occurred
 - Low heterozygosity
- Example
 - Malaria resistance SNPs in Sub-Saharan Africa

SNP Information

- **HID Ancestry Panel**
 - Beta version 3.0
 - 170 loci
 - Derived from
 - Seldin lab (Kosoy et. al 2008)
 - 128 SNP markers
 - Kidd lab (Kidd et. al 2014)
 - 55 SNP markers
 - V4.0 publicly <u>available now</u>

in Common Populations in America

Ancestry Informative Marker Sets for Determining

Continental Origin and Admixture Proportions

Human Mutation

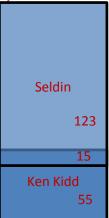
Contents lists available at ScienceDirect

Forensic Science International: Genetics

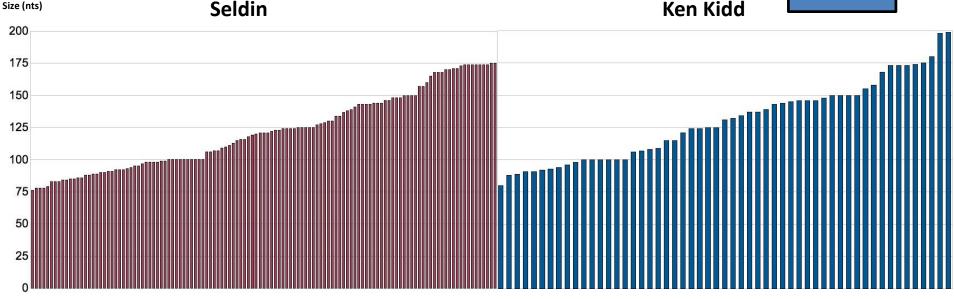
journal homepage: www.elsevier.com/locate/fsig

Progress toward an efficient panel of SNPs for ancestry inference[★]

Kenneth K. Kidd a.*. William C. Speed a. Andrew I. Pakstis a. Manohar R. Furtado b.1. Rixun Fang^b, Abeer Madbouly^c, Martin Maiers^c, Mridu Middha^{c,2}, Françoise R. Friedlaender d, Judith R. Kidd a

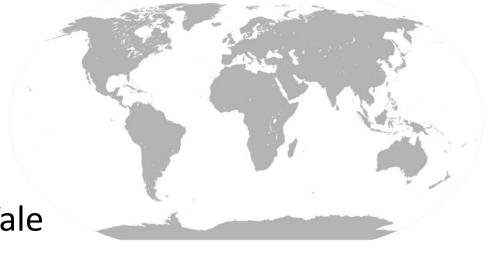

Roman Kosov, Rami Nassir, Chao Tian, Phoebe A. White, Lesley M. Butler, Gabriel Silva, Rick Kittles, Marta E. Alarcon-Riquelme, Peter K. Gregersen, John W. Belmont, Francisco M. De La Vega, 2 and Michael F. Seldin1*

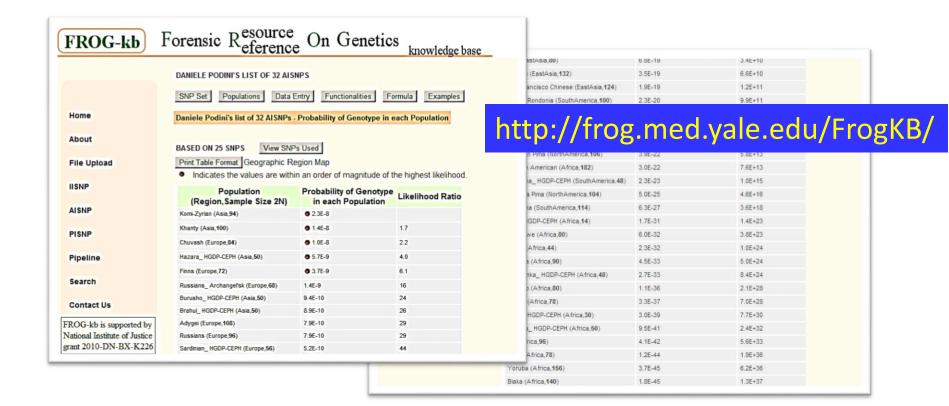
HID-Ion AmpliSeq™ Ancestry Panel


- 165 autosomal markers (for casework samples, investigative leads) 165 SNPs
 - 55 Ken Kidd (55 AIM set ¹)
 - average marker size of 130 nts
 - 123 Seldin ²

Size (nts)

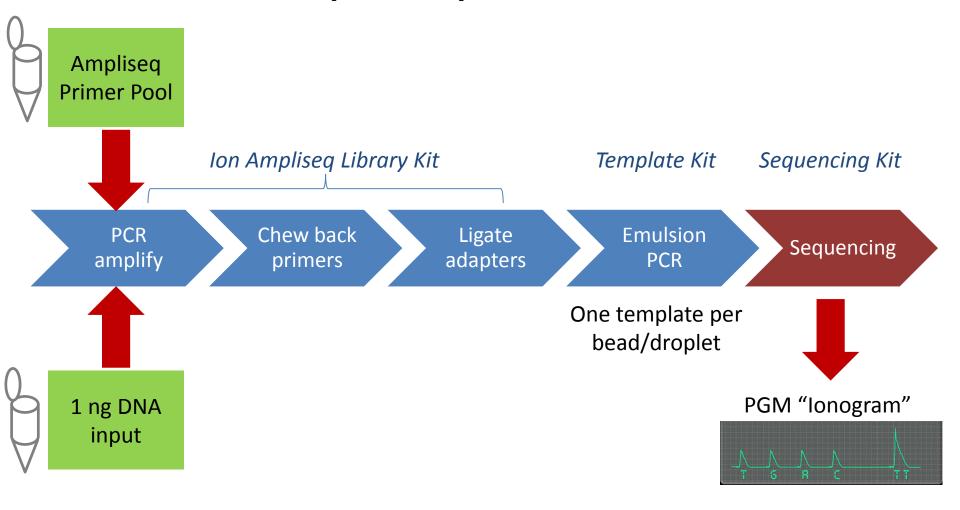
average marker size of 122 nts

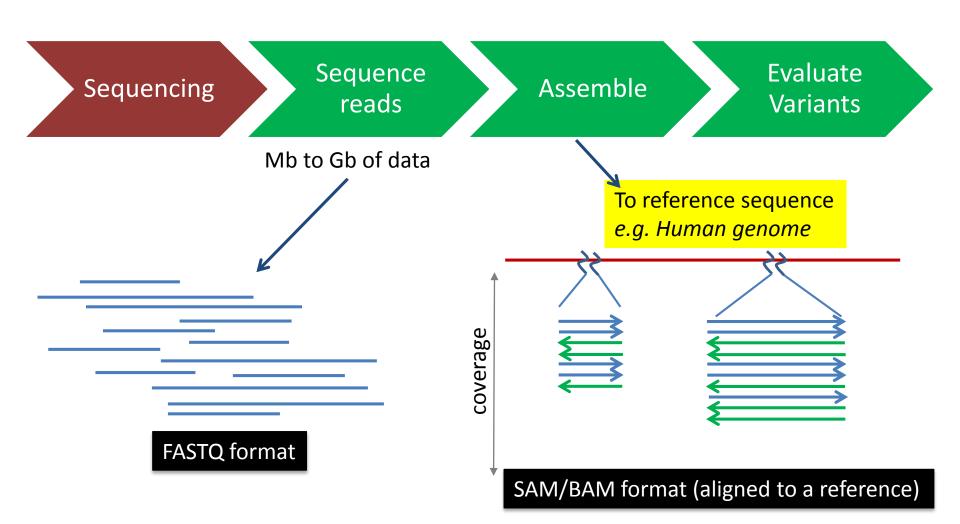

Ken Kidd



Amplicons

SNP Information

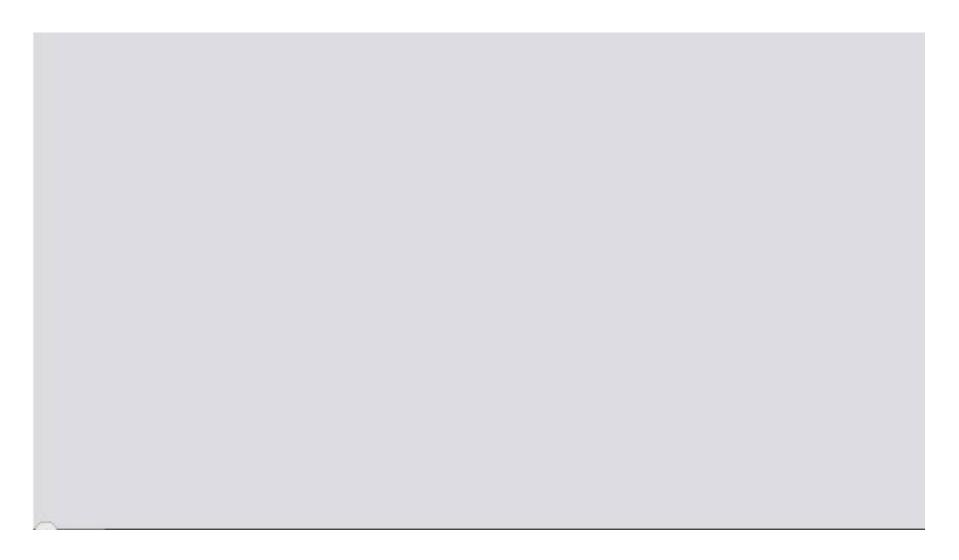

- RMP/LR calculations
 - FROG KB
 - From Dr. Kidd's Lab at Yale



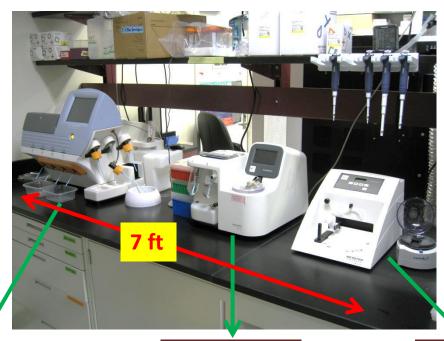
Sequencing Methods

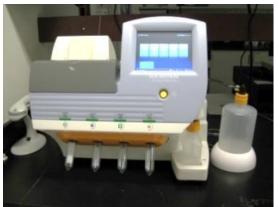
Ampliseq Workflow

Analysis Workflow



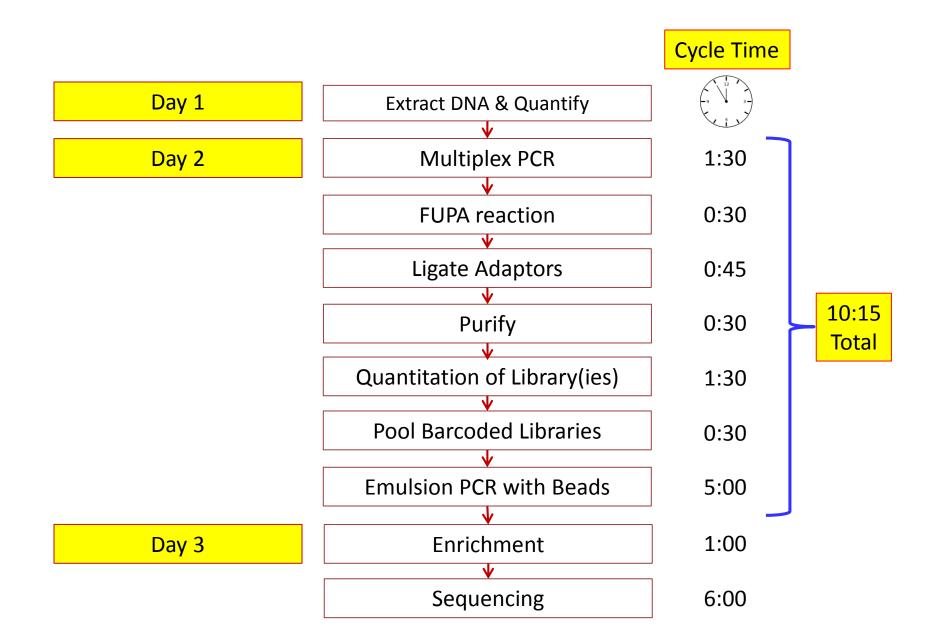
Life Tech - Ion Torrent - PGM


- Ion Torrent Personal Genome Machine (PGM)
 - Launched in 2010
- Ion Torrent sequencing:
 - Emulsion PCR for single copy reactors
 - Non-labeled nucleotide triphosphates
 - Flowed over a bead on a semiconductor surface
- Hydrogen Ion detection
 - pH change is detected
 - No optics

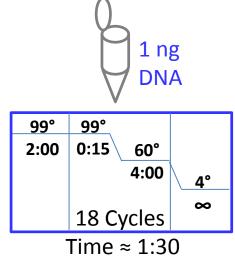

Ion Torrent PGM Workflow

The PGM Instrument at NIST

PGM Sequencer

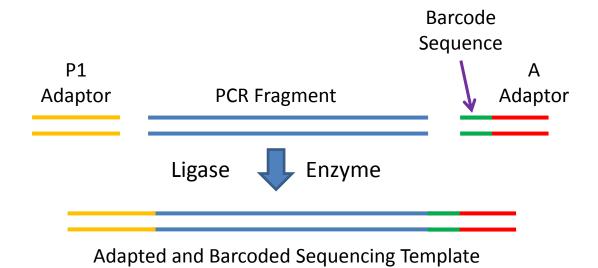

OneTouch 2 (Emulsion PCR)

OneTouch ES (Enrichment)

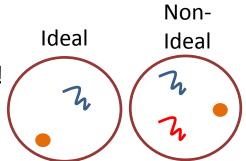


Workflow Overview

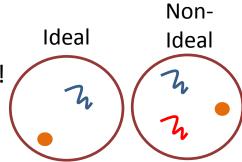
Front-End: Multiplex PCR


- HID-Ion Ampliseq <u>Identity Panel</u> (IISNP)
 - 120 markers in a single PCR reaction
 - Amplified regions 33 bp to 192 bp long
- HID-Ion Ampliseq <u>Ancestry Panel</u> (AISNP)
 - 170 markers in a single PCR reaction
 - Amplified regions 34 bp to 136 bp long

 Small amplicons well suited to degraded or damaged DNA


Digest Primer Regions & Ligate Adaptors

- Enzymatic digestion removes ≈ 25 bp from ends of amplicons
- Universal sequencing adaptors are ligated to DNA
 - Adaptors termed P1 and A
- Barcoded sequencing adaptors can be used in this step
 - Sequence multiple samples in one PGM run

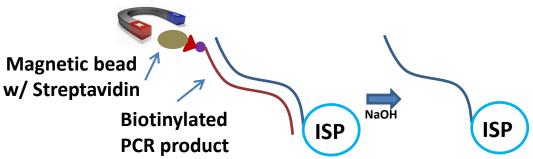

Prepare Ion Sphere Particles (ISPs)

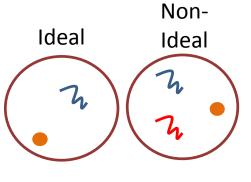
- Libraries quantified by qPCR
 - Quantity of DNA going into emPCR is very important!
 - Goal: 10 % to 30 % template positive ISPs
 - Too much DNA → polyclonal ISPs (mixed read)

Prepare Ion Sphere Particles (ISPs)

- Libraries quantified by qPCR
 - Quantity of DNA going into emPCR is very important!
 - Goal: 10 % to 30 % template positive ISPs
 - Too much DNA → polyclonal ISPs (mixed read)

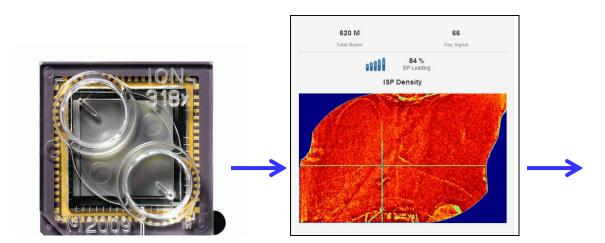
- Emulsion PCR
 - Nanoliter droplets of PCR reagents in oil
 - Attaches sequencing template to the ISP

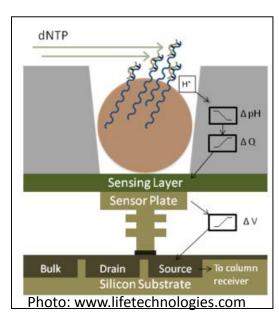

OneTouch 2


Prepare Ion Sphere Particles (ISPs)

- Libraries quantified by qPCR
 - Quantity of DNA going into emPCR is very important!
 - Goal: 10 % to 30 % template positive ISPs
 - Too much DNA → polyclonal ISPs (mixed read)

- Nanoliter droplets of PCR reagents in oil
- Attaches sequencing template to the ISP
- Enrich for positive ISPs
 - Liquid handler removes non-templated ISPs
 - Biotinylated primer/streptavidin beads

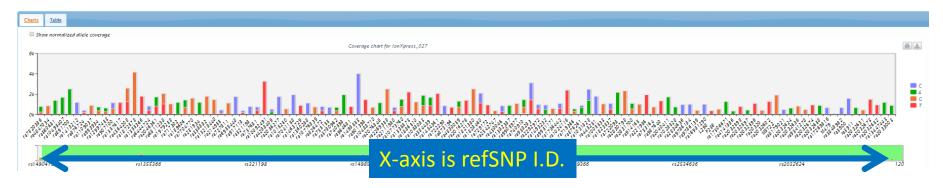

OneTouch 2



OneTouch ES

Sequencing & Data Analysis

- Library ISPs loaded onto chip
- PGM runs flows & detects pH
- Torrent Server & Torrent Suite Software
 - Processes pH signal into base calls
 - Maps reads to reference genome
 - Displays run summary



Data Analysis HID SNP Genotyper Plugin

Allele coverage histogram

Normalized y-axis scale

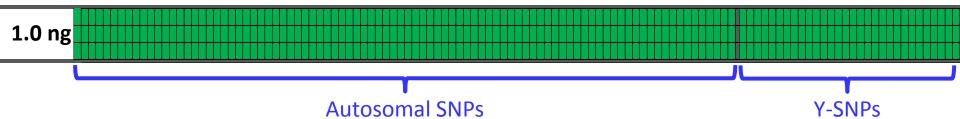
Y-SNPs

Data Analysis HID SNP Genotyper Plugin

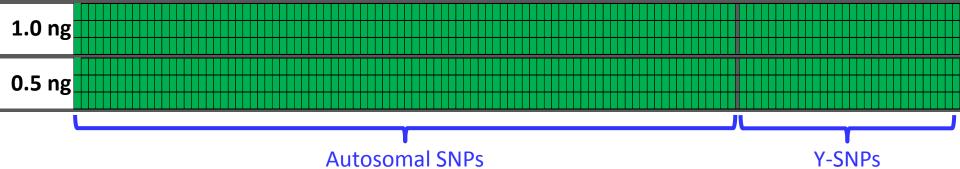
Sam	ple Name	Barcode Id		Genotype Strin									
FRAC	_35-50	IonXpress_016	Details	G-T	-A	-N		N	NNN	Genoty	оеи		
FRAC	50-75	IonXpress_017								-nANI V	_	N	
	Total	press_018	Details	Reads f	GRGA	ARRYTNYYCC	Covera	age for	Stra	AYNI AM-N	Ouality	- Major Alle	ele
		press_019	Details					Strand	Ĭ				
C	overag	press_020	Details	Each Ba	<u> </u>	ARRYTCYYCC	Either	Strand	Bia	IAYNE AMCR	Score	Frequenc	y
CENIC	_10						V COOVEN	UTCA CTANCOA		AGATYMAYC MCR	GDD337 (3.G3.GG	TOTA TATOGRAPH COORS	
_	Cov	A Reads	C Reads		T Reads	Deletions	+Cov	-Cov	% +Cov	Genotype	Qual	Maj. Allele Freq (%)	
SEN_	3235	1474	0	1716	0	45	1405	1785	44.0%	AG	747.84	53.04	AC
¥			0	7	,	0						99.64	
	2222	2214	0		/		873	1349	39.3%	AA	3788.11		
	1261	569		679	13	0	620	641	49.2%	AC	1036.96	53.85	
	2331	2330	0	0	1	0	1014	1317	43.5%	AA	181.32	99.96	
	3379	1544	7	1694	11	129	1223	2027	37.6%	AG	940.58	50.13	
	4655	3	3	4646	3	0	1581	3074	34.0%	CC	3825	99.81	
	2182	0	986	2	1146	48	1161	973	54.4%	СТ	683.67	52.52	
	592	7	1	3	586	1	329	262	55.7%	π	3805.42	98.99	
	1664	7	7	1660	0	2	704	958	42.4%	CC	175.09	99.76	
	1135	1131	7	3	0	О	585	550	51.5%	AA	166.022	99.65	
	915	0	0	859	0	56	569	290	66.2%	СС	3666.93	93.88	
	1967	9	1019	932	2	5	907	1055	46.2%	СС	1046.97	51.8	
	1989	4	115	0	1835	35	969	985	49.6%	π	3609.27	92.26	
	3770	26	7	1766	1975	2	2729	1039	72.4%	ст	805.29	52.39	
	5712	5543	0	4	0	165	2618	2929	47.2%	AA	3841.28	97.04	
	chr3	961782 rs135		rs1357617	1989	4 115	0	1835 35	969	985 49.69	ι π	3609.27 92.26	
•	chr3	32417644 rs4364	1205	rs4364205	3770	26 1	1766	1975 2	2729	1039 72.49	CT	805.29 52.39	
€	chr3	<u>113804979</u> rs1872	575	<u>rs1872575</u>	5712	5543 0	4	0 165	2618	2929 47.29	K AA	3841.28 97.04	

Experimental Data

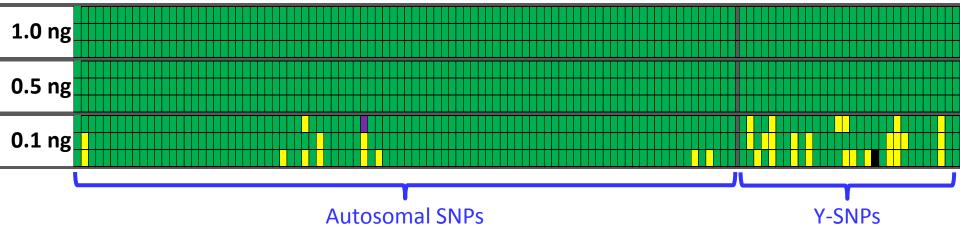
- HID Identity Panel
 - Sensitivity study
 - Degraded DNA study
 - Mixture study
- HID Ancestry Panel
 - Ancestry prediction

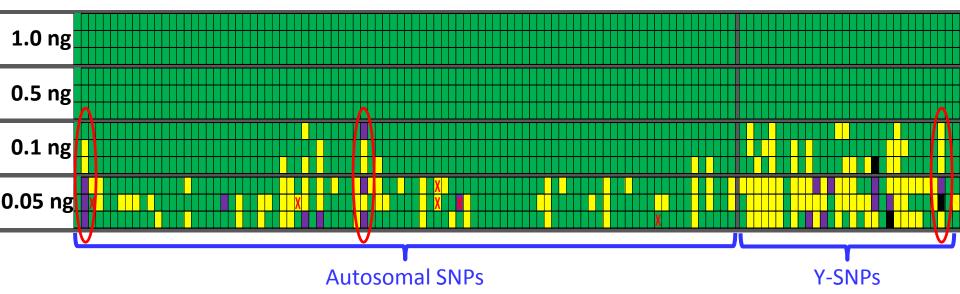

- Dynamic range of DNA input to PCR
 - 1 ng is recommended
 - 10 ng (1 data point) no problems were observed

```
- 1 ng
- 0.5 ng
- 0.1 ng
- 0.05 ng

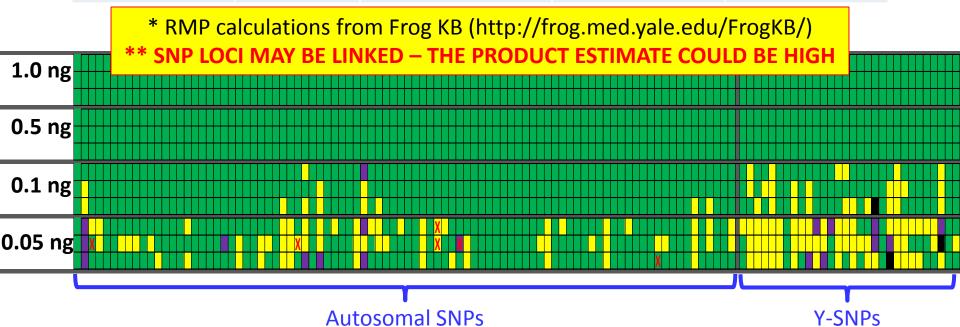

3 Replicates
```

- Libraries were generated and pooled (n = 12)
- Sequenced on PGM 318 chip (11 M wells)
 - 200 bp read chemistry

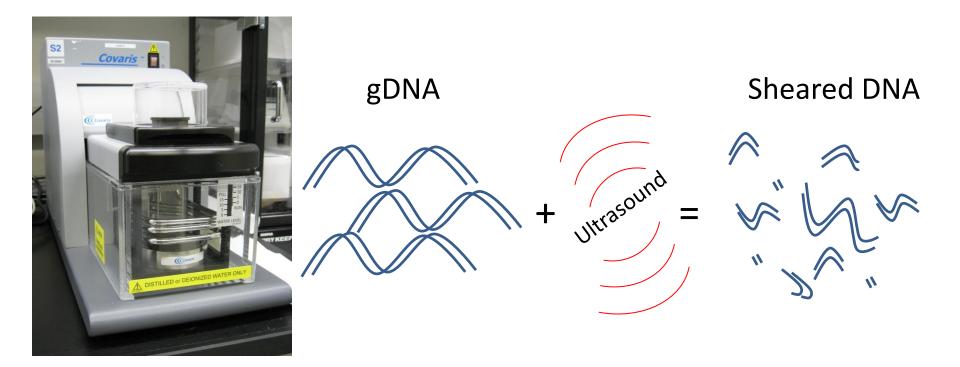

- Sequence coverage per locus
 - 200 or more reads = green ■
 - Below 200 reads = yellow
 - Below 50 reads = purple
 - Below quality cutoff = black
 - Incorrect genotype = red X


- Sequence coverage per locus
 - 200 or more reads = green ■
 - Below 200 reads = yellow
 - Below 50 reads = purple
 - Below quality cutoff = black
 - Incorrect genotype = red X X

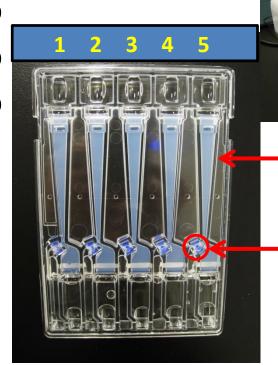
- Sequence coverage per locus
 - 200 or more reads = green ■
 - Below 200 reads = yellow
 - Below 50 reads = purple
 - Below quality cutoff = black
 - Incorrect genotype = red X



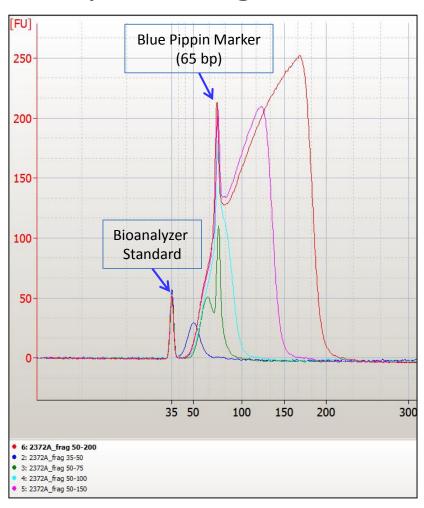
- Sequence coverage per locus
 - 200 or more reads = green
 - Below 200 reads = yellow
 - Below 50 reads = purple
 - Below quality cutoff = black
 - Incorrect genotype = red X

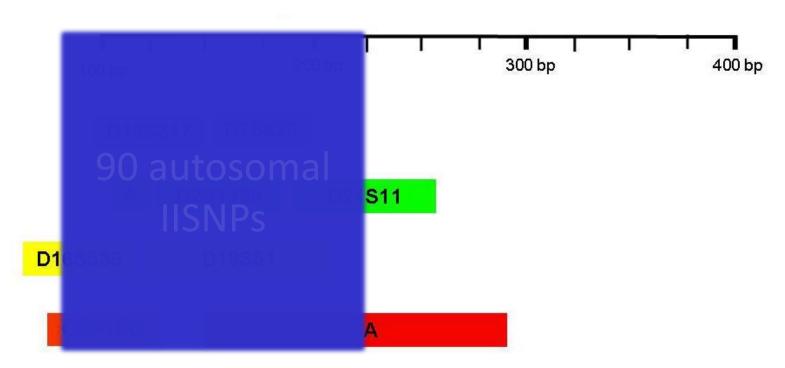


HID SNP Panel Sensitivity RMP With 200 Read Cutoff

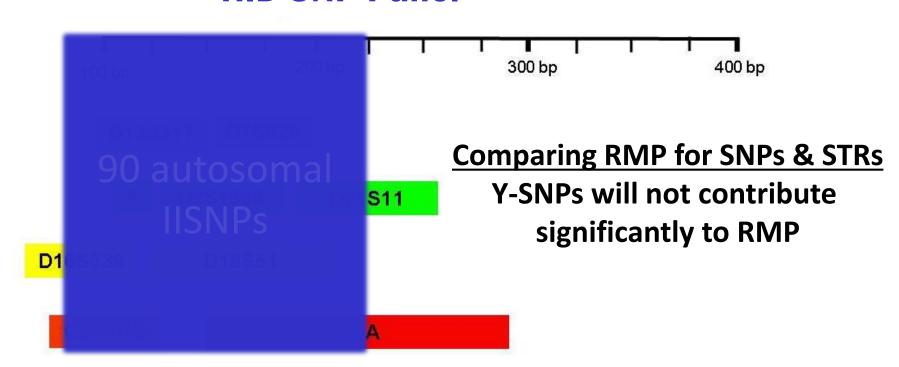

	% Below 200 Reads	RMP* Estimate SNPforID 52	RMP* Estimate Kidd 45	RMP Estimate Product **
1.0 ng	0 %	1 in 1.0 x 10 ¹⁵	1 in 4.0 x 10 ¹⁴	1 in 4.1 x 10 ²⁹
0.5 ng	0 %	1 in 1.0 x 10 ¹⁵	1 in 4.0 x 10 ¹⁴	1 in 4.1 x 10 ²⁹
0.1 ng	10 %	1 in 4.4 x 10 ¹⁴	1 in 2.6 x 10 ¹³	1 in 1.1 x 10 ²⁸
0.05 ng	35 %	1 in 7.4 x 10 ¹¹	1 in 1.7 x 10 ¹⁰	1 in 1.2 x 10 ²²

- Total genomic DNA was sheared
 - Covaris S2 Focused Ultrasonicator

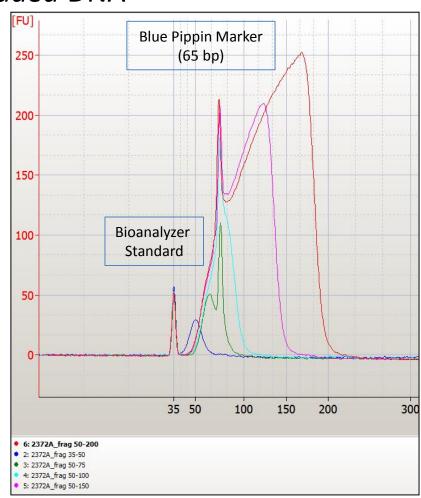

- Sheared DNA was fractionated by size range
 - Blue Pippin system (3% Gel)
 - Automated size selection
 - 1) 50 bp to 200 bp
 - 2) 50 bp to 150 bp
 - 3) 50 bp to 100 bp
 - 4) 50 bp to 75 bp
 - 5) 35 bp to 50 bp


Five individual agarose columns

Size fractionated fragments collected into recovery wells


- Sheared DNA was fractionated by size range
 - Agilent Bioanalyzer Trace
 - Size selected sheared DNA
 - 50 bp to 200 bp
 - 50 bp to 150 bp
 - 50 bp to 100 bp
 - 50 bp to 75 bp
 - 35 bp to 50 bp
 - Input to HID Panel PCR
 - 1 ng DNA
 - Built libraries and sequenced

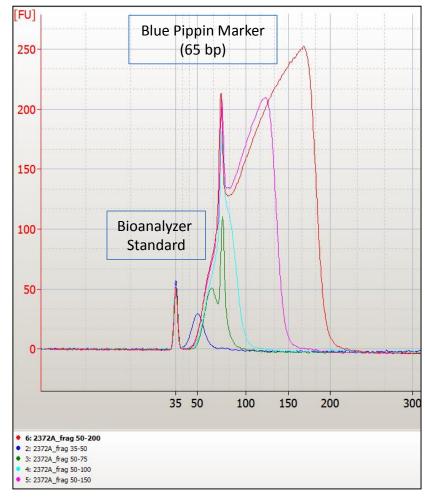
HID SNP Panel



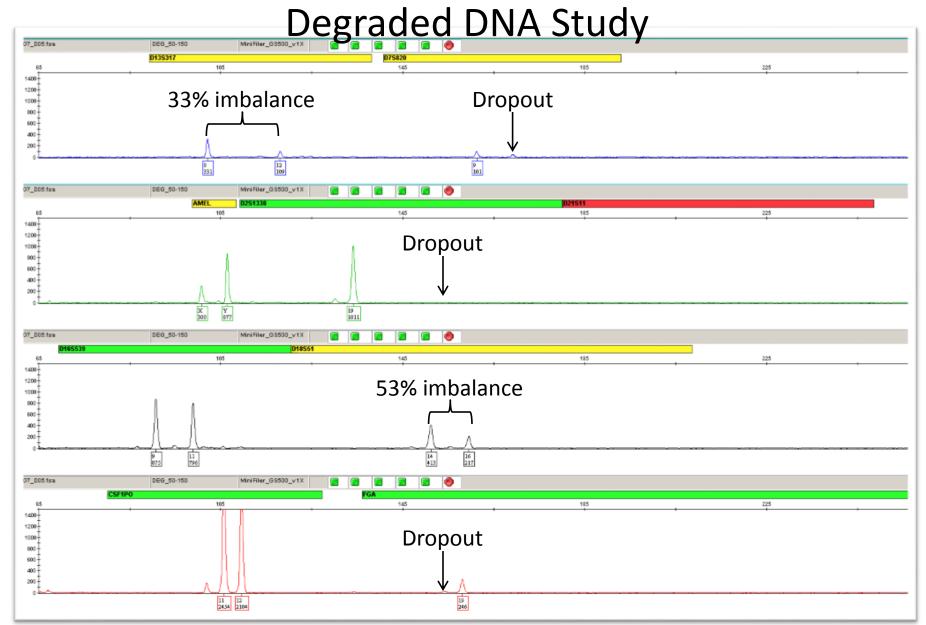
HID SNP Panel

HID SNP Panel compared with MiniFiler

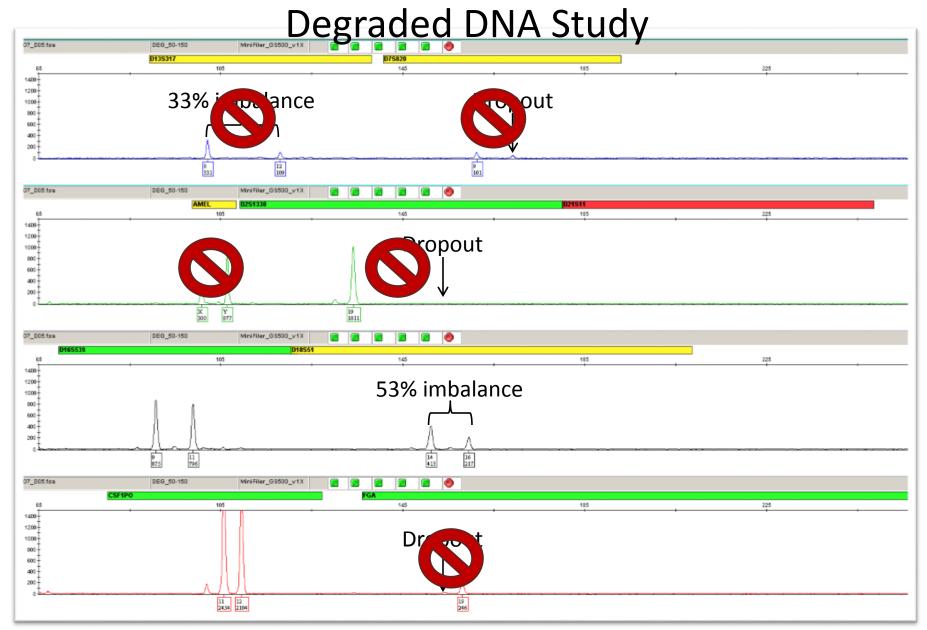
- 1 ng (PGM) or 0.5 ng (MF) non-degraded DNA
- 1 ng degraded DNA, 50-200
- 1 ng degraded DNA, 50-150
- 1 ng degraded DNA, 50-100
- 1 ng degraded DNA, 50-75
- 1 ng degraded DNA, 35-50



HID SNP Panel compared with MiniFiler


- 1 ng (PGM) or 0.5 ng (MF) non-degraded DNA
- 1 ng degraded DNA, 50-200
- 1 ng degraded DNA, 50-150
- 1 ng degraded DNA, 50-100
- 1 ng degraded DNA, 50-75
- 1 ng degraded DNA, 35-50

MiniFiler Thresholds


- 50 RFU analytical
- all loci heterozygous
- < 50% heterozygote balance

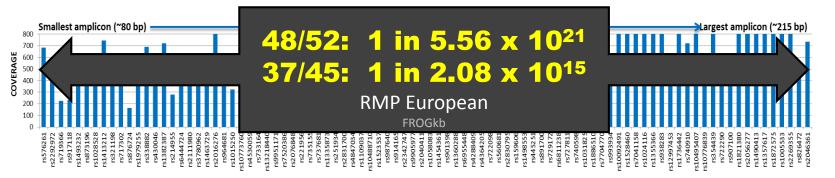
HID SNP Panel

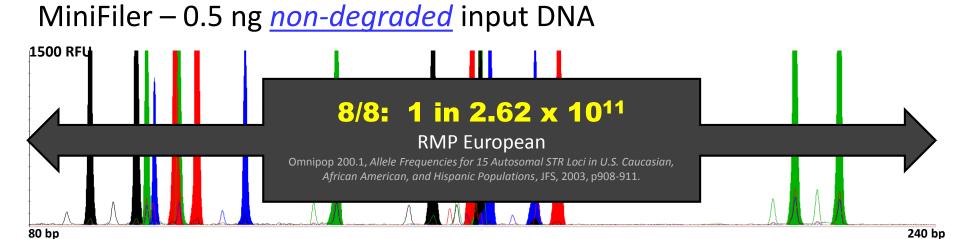
HID SNP Panel

HID SNP Panel compared with MiniFiler

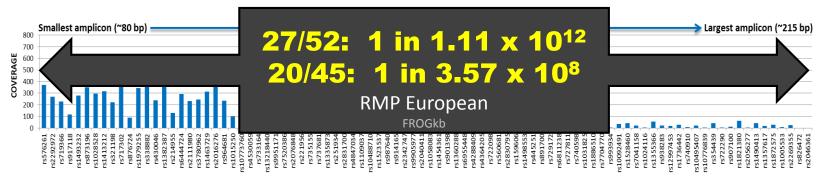
- 1 ng (PGM) or 0.5 ng (MF) non-degraded DNA
- 1 ng degraded DNA, 50-200
- 1 ng degraded DNA, 50-150
- 1 ng degraded DNA, 50-100
- 1 ng degraded DNA, 50-75
- 1 ng degraded DNA, 35-50

MiniFiler Thresholds

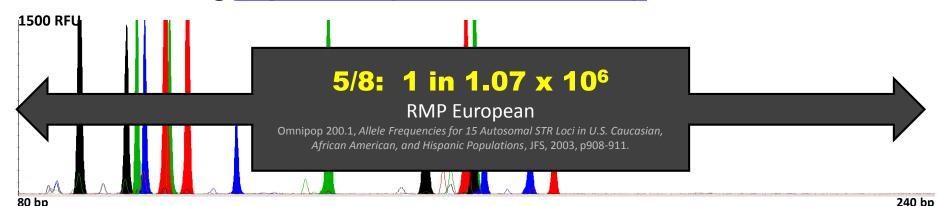

- 50 RFU analytical
- all loci heterozygous
- 50% heterozygote balance


PGM Thresholds

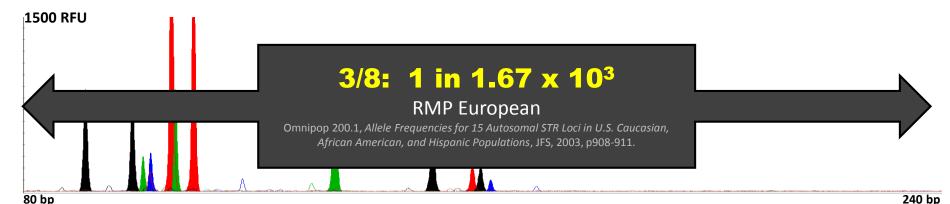
- 50X coverage "analytical"
- 100X coverage "stochastic"
- 60% heterozygote balance


COMPARISON OF RMPs

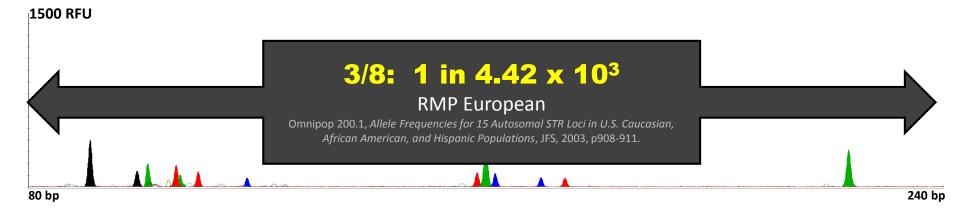
PGM IISNP – 1 ng <u>non-degraded</u> input DNA

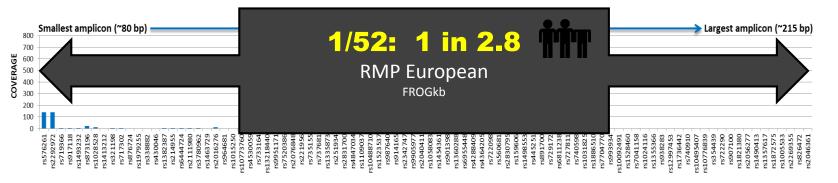


PGM IISNP – 1 ng <u>degraded</u> input <u>DNA</u>, <u>50-200 bp</u> size selected



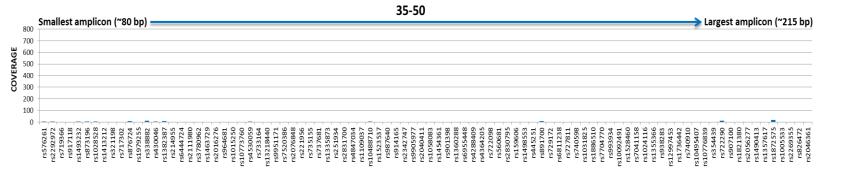
PGM IISNP – 1 ng <u>degraded</u> input DNA, 50-150 bp size selected


MiniFiler – 1 ng degraded input DNA, 50-150 bp size selected


PGM IISNP – 1 ng <u>degraded</u> input <u>DNA</u>, <u>50-100 bp</u> size selected

MiniFiler – 1 ng degraded input DNA, 50-100 bp size selected

PGM IISNP – 1 ng <u>degraded</u> input <u>DNA</u>, <u>50-75 bp</u> size selected


MiniFiler – 1 ng <u>degraded</u> input DNA, <u>50-75 bp</u> size selected

80 bp

240 bp

PGM IISNP – 1 ng <u>degraded</u> input DNA, 35-50 bp size selected

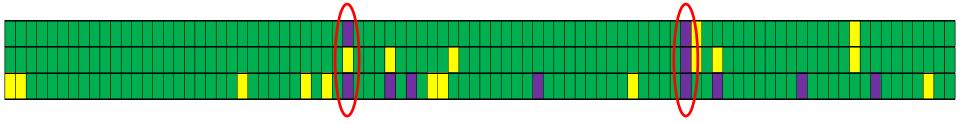
MiniFiler – 1 ng <u>degraded</u> input DNA, 35-50 bp size selected

80 bp 240 bp

HID SNP Panel Mixture Study

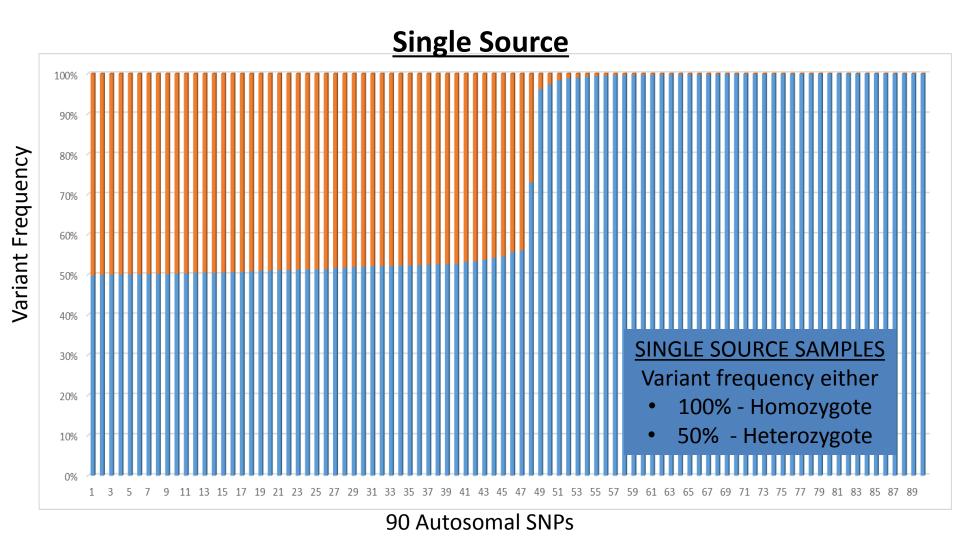
- Evaluate allelic ratios in a mixture sample
 - 3:1 mixture of two individuals (SRM 2391c)
 - Calculate expected ratio for bi-allelic SNPs
 - Examine deviation from expectation

Individual 1 (3x)	Individual 2 (1x)	% A	% B	Expected Variant Frequency (3:1 Mixture)
AA	AA	100	0	100 %
AA	AB	87.5	12.5	87.5 %
AA	BB	75	25	75 %
AB	AA	62.5	37.5	62.5 %
AB	AB	50	50	50 %
AB	BB	37.5	62.5	62.5 %
BB	AA	25	75	75 %
ВВ	AB	12.5	87.5	87.5 %
BB	ВВ	0	100	100 %

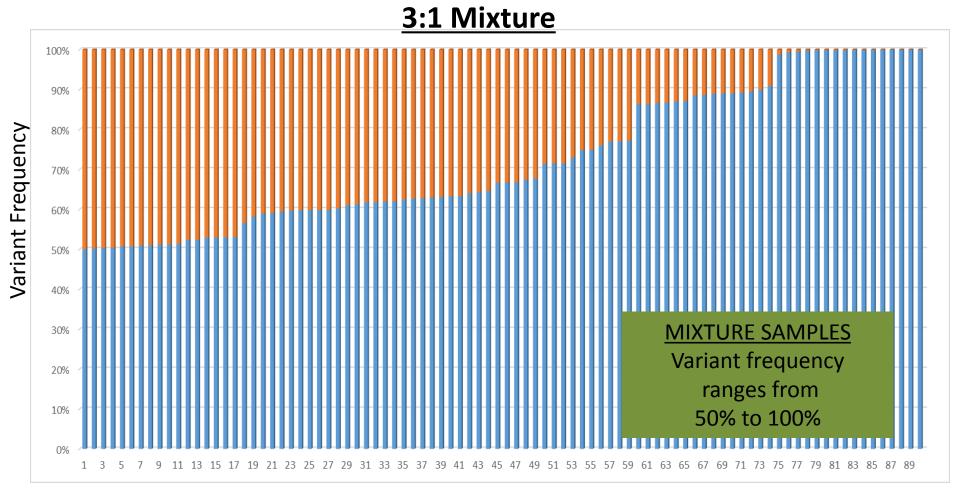

HID SNP Panel Mixture Study - Results

- Three replicates of SRM 2391c Component D
- Only autosomal loci considered

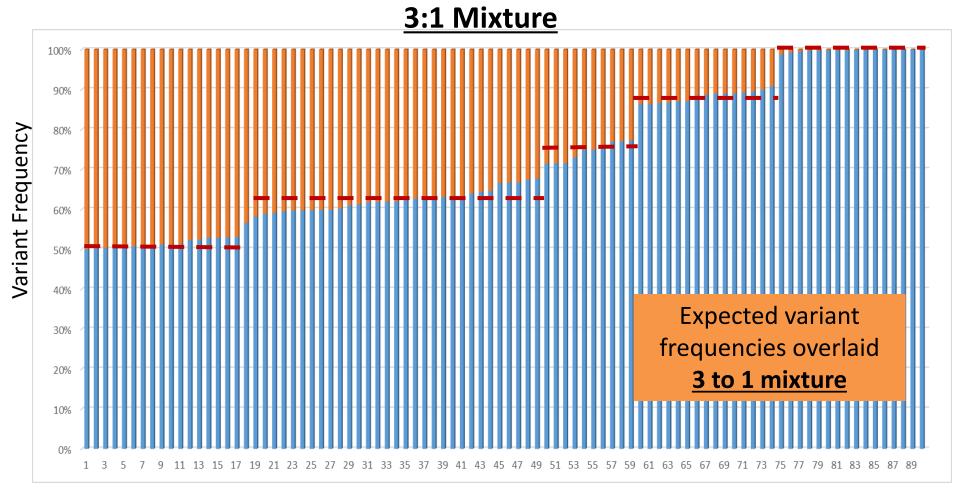
- Deviation from expected variant frequency
 - Less than 5 % = green ■
 - -5% to 10 % = yellow \Box
 - Above 10 % = Purple ■


HID SNP Panel Mixture Study - Results

- Three replicates of SRM 2391c Component D
- Only autosomal loci considered



- Deviation from expected variant frequency
 - Less than 5 % = green ■
 - -5% to 10 % = yellow \Box
 - Above 10 % = Purple ■


HID SNP Panel Mixture Detection

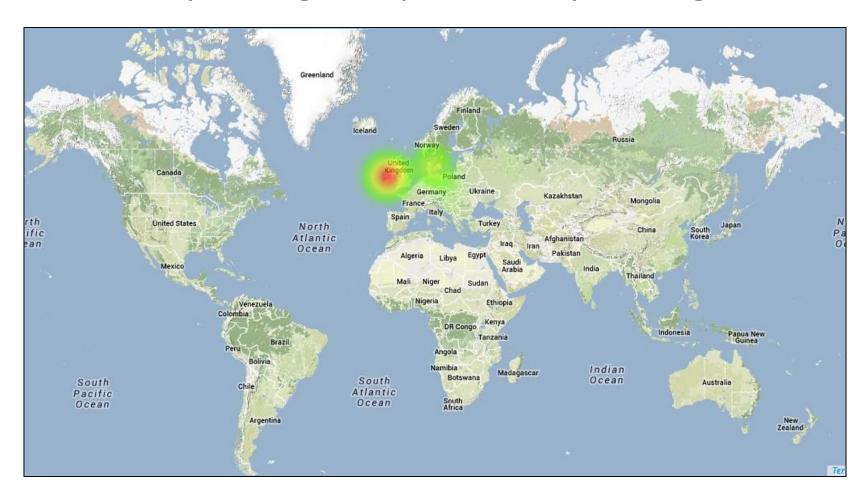
HID SNP Panel Mixture Detection

HID SNP Panel Mixture Detection

90 Autosomal SNPs

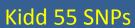
Experimental Data

- HID Identity Panel
 - Sensitivity study
 - Degraded DNA study
 - Mixture study
- HID Ancestry Panel
 - Ancestry prediction

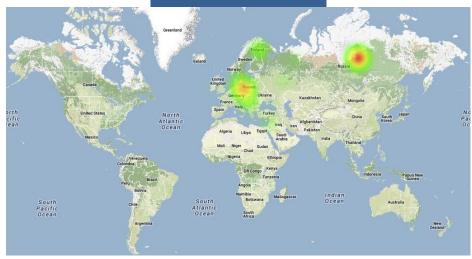

AIM Panel Ancestry Prediction – SRM 2391c

- Likelihood Ratio calculations
 - Four categories present in both Kidd and Seldin studies
 - Europeans, African Americans, Maya, and Han Chinese
 - Allows comparison of SNP sets' performance
 - Representative of major U.S. populations

SRM 2391c Component	Gender	Ethnicity (self declared)
Α	Female	Not listed
В	Male	Mexican-American
С	Male	Melanesian
D	Female:Male	Mixed sample
E	Female	Not listed
F	Male	Caucasian


HID SNP Genotyper Plugin (v4.1) New Feature – Ancestry Map

Heatmap of highest probability of origin



Ancestry Prediction SRM 2391c Component A

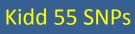
SRM 2391c Component	Gender	Ethnicity	Kidd 55 Prediction	Seldin 128 Prediction
А	Female	Not listed	European 1.02 x 10 ³³	European 6.32 x 10 ⁶⁶

Ancestry Prediction SRM 2391c Component B

SRM 2391c Component	Gender	Ethnicity	Kidd 55 Prediction	Seldin 128 Prediction
В	Male	Mexican- American	European 5.39 x 10 ¹²	Han Chinese 1.48 x 10 ¹⁹

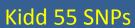
Kidd 55 SNPs

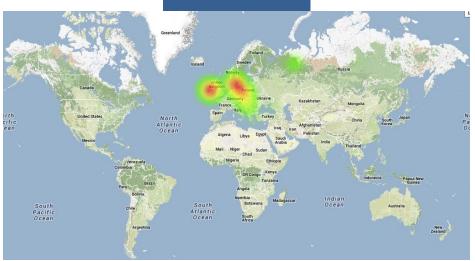
Ancestry Prediction SRM 2391c Component C

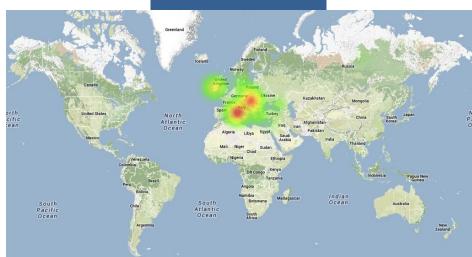

SRM 2391c Component	Gender	Ethnicity	Kidd 55 Prediction	Seldin 128 Prediction
С	Male	Melanesian	Han Chinese 1.54 x 10 ¹⁴	Han Chinese 6.67 x 10 ²⁸

Ancestry Prediction SRM 2391c Component E

SRM 2391c Component	Gender	Ethnicity	Kidd 55 Prediction	Seldin 128 Prediction
E	Female	Not listed	European 5.41 x 10 ²¹	European 3.92 x 10 ⁵⁰




Canda Severe Russis Russis Canda Severe Russis Russi Russi



Ancestry Prediction SRM 2391c Component F

SRM 2391c Component	Gender	Ethnicity	Kidd 55 Prediction	Seldin 128 Prediction
F	Male	Caucasian	European 2.35 x 10 ³¹	European 1.16 x 10 ⁵⁵

HID SNP Genotyper Plugin V4.1 Some Settings Are Locked Down

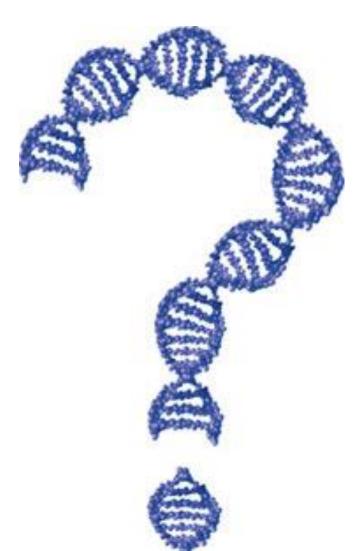
AIM Panels can be selected

HID SNP Genetyper Plug	in			
SNP Panels:	Reference Genome:	hg19		
☐ KiddLab - Set of 55 AISNPs	Targeted Regions:	iiSNPv2.3_1	rargets	•
	Hotspot Regions:	iiSNPv2.3_F	Hotspots	•
Upload Custom Parameter Settings: Choose File No file chosen	Trim Reads:	•		
Parameter		SNP		Hotspot
Minimum allele frequency min_allele_freq		0.1		0.1
Minimum quality min_variant_score		10		10
Minimum coverage		6		6
Minimum coverage on either strand		0		3
min_cov_each_strand				
Maximum strand bias strand_bias		1		1
Minimum relative read quality data_quality_stringency		6.5		
Maximum common signal shift filter_unusual_predictions		0.3		
V	ersion 4.1	BETA		Hide Advanced Settings •

Acknowledgements THANK YOU!

Dr. Peter Vallone Group Leader

Funding from the FBI
Biometrics Center of
Excellence 'Forensic DNA
Typing as a Biometric Tool'


Dr. Katherine Gettings Research Biologist

Our gratitude to:
The R&D team at Life Technologies/Thermo Fisher

Thank you for your attention!

Contact Info:

Kevin.Kiesler@nist.gov 301-975-4306

