

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Development of miniSTRs

We were in a unique position to do this project

- NIJ-funding at NIST and Ohio University
- Previous work with TOF-MS to make STRs smaller
- Knowledge of CODIS STR systems from writing book
- Information on variant and null alleles because of maintaining STRBase web site
- Current efforts to rapidly develop multiplex assays
- Improved primer design software and strategies
- Quality control capabilities for PCR primers using TOF-MS and HPLC
- Knowledge of fluorescence dyes and CE
- Genotyper macro writing experience

Development of miniSTR Assays

- Project begun in November 2001 at the request of Bob Shaler to aid WTC DNA identifications
- Primers designed to come as close as possible to the repeat region to generate the smallest possible PCR products
- Smaller amplicons offer improved chances of success with degraded DNA samples
- Available as singleplexes or miniplexes (usually one locus per dye color)
- Testing has been performed to demonstrate equivalent genotypes are produced compared with commercial STR kits (developmental validation)

Development of miniSTRs

Steps for miniSTR Development

- · Design new primers close to repeat
- · Purchase and QC primers
- · Develop and standardize PCR conditions
- · Create allelic ladders
- · Develop Genotyper macros
- Test set of samples with new primers versus commercial STR kits for concordance in calls
- · Write up protocols

Testing being performed in 2 independent laboratories (collaboration with Bruce McCord, Ohio University)

combinations were chosen because matrix is commercially available and works well on ABI 310/3100 6FAM VIC NED PET								
Miniplex 1	TH01	CSF1PO	TPOX	D3S1358				
Miniplex 2	D5S818	D8S1179	D16S539	Penta D				
Miniplex 3	FGA	D21S11	D7S820	Penta E				
Miniplex 4	VWA	D18S51	D13S317	D2S1338				
Miniplex 5	Penta D	Penta E	D2S1338					
"Big Mini"	TH01, FGA	CSF, D21	TPOX, D7	Only Big N supplied to C	Aini DCA			

		Timer Sequences for big Min	1011(0)	stem
Locus		Big Mini Primer Sequences (5'-3')	Primer Conc.	Distance 3'end from STR repeat
TH01	F	6FAM-CCTGTTCCTCCCTTATTTCCC	1 uM	0
	R	GTTTCTT GGGAACACAGACTCCATGGTG	1 µM	1
FGA	F	6FAM-AAATAAAATTAGGCATATTTACAAGC	1 μM	3
	R	GCTGAGTGATTTGTCTGTAATTG	1 µM	23
CSF1PO	F	VIC-ACAGTAACTGCCTTCATAGATAG	0.6 µM	14
	R	GTGTCAGACCCTGTTCTAAGTA	0.6 µM	6
D21S11	F	VIC-ATTCCCCAAGTGAATTGC	1.5 µM	2
	R	GGTAGATAGACTGGATAGATAGACGA	1.5 µM	0
TPOX	F	NED-CTTAGGGAACCCTCACTGAATG	1 µM	-4
	R	GTTTCTT GTCCTTGTCAGCGTTTATTTGC	1 µM	5
D7S820	F	NED-GAACACTTGTCATAGTTTAGAACGAAC	1.5 µM	4
	R	GTTTCTT TCATTGACAGAATTGCACCA	1.5 µM	65

Developm	Information on Big Mini STR Loci							
				G	enBank sequence			
Locus	Allele Spread (repeat)	Allele Spread (bp)	Start	Stop	Reference Size			
TH01	314	44	55	98	79 bp			
			+7 bp					
FGA	12.251.2	(152)	125	281	159 bp			
		\smile						
CSF1PO	616	40	89	129	113 bp			
D21S11	2438.2	(127)	153	209	173 bp			
TPOX	514	36	65	101	89 bp			
			+7 bp					
D7S820	515	40	136	176	168 bp			
			+7 bp					
	From STRBase and Forensic DNA Typing Appendix 1							

Development	ofm	iniSTRs							
	Pri	mer Position R	elative to Repeat						
Locu	S	Distance 3'end from Rep	eat Comment						
CSF1	PO F	14	partial repeat just 5' of repeat						
	R	6							
FG4	۲.	3							
	R	23	partial repeat just 3' of repeat						
THO	1 F	0							
	R	1							
TPO	X F	-4							
	R	5							
VW	A F	0							
	R	0							
D3S13	58 F	-1							
	R	-1							
D5S8	18 F	4 20	Has been changed due to						
	R	-5 6	allele dropout problems						
D7 S8	20 F	4							
	R	65	polyA stretch just 3' of repeat						

Develo	pment o	f	niniSTRs	
	Prin	ne	r Position Relativ	e to Repeat (cont.)
	D8S1179	F	-4	
		R	5	
	D13S317	F	19	self-complementary just 5' of repeat
		R	2	
	D16S539	F	0	
		R	16	
	D18S51	F	5	
		R	33	partial repeat just 3' of repeat
	D21S11	F	2	
		R	0	
	Penta D	F	11	
		R	19	polyA stretch just 3' of repeat
	Penta E	F	6	
		R	4	
	D2S1338	F	3	
		R	3	
	D19S433	F	3	
		R	12	

PCR Conditions
25 uL volume
 – 4.6 uL PCR mix (must add 2 U TaqGold—0.4 uL)
 – 5 uL Big Mini primer mix
 up to 15 uL DNA extract
PCR mix
$-$ 1X Gold buffer, 1.5 mM MgCl_2, and 200 μM dNTPs (no BSA)
Thermal Cycling
 95 °C for 10 minutes
– 28 cycles: 94 °C for 1 min, 55 °C for 1 min, 72 °C for 1 min
 – 60 °C for 45 minutes
 25 °C forever

Development of miniSTRs

Comments on Primer Design

- All known information on flanking sequence variation that has caused null alleles in the past between various kits has been taken into account
- Designed to work as singleplexes or limited miniplexes (to pick up loci that failed when a kit was run on a degraded sample)
- · All primer information is made fully available
- Resulted from NIJ-funded work begun in June 1997 with TOF-MS

Development of miniSTRs: Potential Pitfalls

Null alleles

- Allele is present in the DNA sample but fails to be amplified due to a nucleotide change in a primer binding site
- Allele dropout is a problem because a heterozygous sample appears falsely as a homozygote
- Two PCR primer sets can yield different results
- This phenomenon impacts DNA databases but lower stringency matches reduce problem

Apparent Null	Allel	es Observ	ved During Concorda	ince Studi
	Locus	Kits Compared	Results	Reference
8/13 CODIS	D13	PP1.1 vs PP16 vs ProPlus	Loss of alleles 9,10, and 11 with PP1.1; fine with PP16 and ProPlus	Promega meeting Oct 2000
loci affected so far [D13	PP1.1	Reported 4 bp deletion in 3' flanking region while sequencing a rare allele 7 from 2 Asians	Promega meeting Oct 2000 (P#23)
	D16	PP1.1 vs PP16 vs COfiler	Loss of alleles with PP1.1; fine with PP16 and COfiler	Promega meeting Oct 2000
	D8	PP16 vs. ProPlus	Loss of allele 16 with ProPlus; fine with PP16	Promega meeting Oct 2000
	D8	PP16 vs SGM Plus	Loss of allele 15 with SGM Plus; fine with PP16	Promega meeting Oct 2000
	VWA	PP1.1 vs. Profiler	Loss of allele 19 in Profiler; fine with PP1.1	Kline 1998
	VWA	PP16 vs ProPlus	Weak amp of allele 19 with ProPlus; fine with PP16	Promega meeting Oct 2000 (P#101)
	D5	PP16 vs ProPlus	Loss of alleles 10 and 11 with PP16; fine with ProPlus	ISFG 2001 (P#24)
	FGA	PP16 vs ProPlus	Weak amp on allele 21 with ProPlus; fine with PP16	Promega meeting Oct 2000 (P#101)
	FGA	SGM vs SGM Plus	Loss of allele 26 with SGM Plus; weak amp of same allele with SGM	Cotton 2000
	CSF	PP16 vs COfiler	Weak amp on allele 14 with COfiler; fine with PP16	Promega meeting Oct 2000
	CSF	PP16 vs Profiler	Weak amp on allele 8 with PP16; fine with Profiler	Promega meeting Oct 2000
	TPOX	PP16 vs Profiler	Weak amp on allele 9 with PP16; fine with Profiler	Promega meeting Oct 2000

Newly designed D5S818 miniSTR primers							
			Polymorp	hic bases re	ported		
CTGAGACATG Gactctgtac	CATATGCTTT Gtatacgaaa	TAAAGCTTCT Atttcgaaga	A at ISF	G 2001 mee	ting TAC		
TAATAAAAGT Attatttca	ATATTTTATT TATAAAATTA	AGCAAGTATG TCGTTCATAC	TGACAA <mark>gggt</mark> Actgttccca	GATTTTCCTC CTAAAAGGAG	TTTGGTATCC AAACCATAGG		
	TTTTGA <mark>AGAT</mark> AAAACTTCTA	AGATAGATAG TCTATCTATC	ATAGATAGAT Tatctatcta	AGATAGATAG TCTATCTATC	ATAGATAGAT Tatctatcta		
	ATAAGGATAC TATTCCTATG	AGATAAAGAT TCTATTTCTA		TAAACTGTGG Atttgacacc	CTATGATTGG GATACTAACC		
AATCACTTGG TTAGTGAACC	CTAAAAAGCA Gatttttcgt	CTAAAGCATT Gatttcgtaa	CCTCTGAGAG GGAGACTCTC	AGACAATTAC TCTGTTAATG	TTTTTTGCTT AAAAAACGAA		

Development of miniSTR	Development of miniSTRs: Quality Control							
MiniSTR Primer Positions for D8S1179								
CTCTGTAGCC AGTGGCGCCT GAGACATCGG TCACCGCGGA	TTGCCTGAGT AACGGACTCA	TTTGCTCAGG AAACGAGTCC	CCCACTGGGC GGGTGACCCG	TCTTTTTGCC Agaaaaacgg				
CACACGGCCG GGCAACTTAT GTGTGCCGGC CCGTTGAATA	ATGTATT III Tacataaaaa	GTATTTCATG Cataaagtac	TGTACATTCG Acatgtaagc	TATCTATCTG ATAGATAGAC				
TCTATCTATC Agatagatag Atagatagatag	TCTATCTATC Agatagatag	TATCTATCTA Atagatagat	TCTATTCCCC Agataaggg <mark>g</mark>	ACAGTGAAAA TGTCACTTTT				
TAATCTACAG ATTAGATGTC CTATCCATTT	TAAATTAAGG Atttaattcc	CATATTCA R GTATAAGT Y	CAATGGGATA GTTACCCTAT	CGATACAGTG GCTATGTCAC				
ATGAAAATGA TACTTTTACT TGATTAATA	GCTACGTGAA CGATGCACTT	ACTATACT <mark>(</mark> A Tgatatga 3t	TGAACACAAT Acttgtgtta	TTGGTAAAAG AACCATTTTC				
-37 bp size reduction								

Developmen	<u>t of miniSTR</u>	s: Quality Co	ontrol					
	MiniSTR Primer Positions for D16S539							
AATCTAAATG	CAGAAAAGCA	CTGAAAGAAG	AATCCCGAAA	ACCACAGTTC	CCATTTTTAT			
TTAGATTTAC	GTCTTTTCGT	Gactttcttc	TTAGGGCTTT	TGGTGTCAAG	Ggtaaaaata			
ATGGGAGCAA	ACAAAGCAGA	TCCCAAGCTC	TTCCTCTTCC	CTAGATCA <mark>at</mark>	ACAGACAGAC			
TACCCTCGTT	Tgtttcgtct	Agggttcgag	AAGGAGAAGG	Gatctagtta	TGTCTGTCTG			
ACACAGGTGC	ATAGATAGAT	AGATAGATAG	ATAGATAGAT	AGATAGATAG	ATATCATTGA			
TCTGTCCACC	Tatctatcta	TCTATCTATC	Tatctatcta	TCTATCTATC	Tatagtaact			
AAGACAAAAC	AGAGATGGAT	GATAGATAC <mark>a</mark>	TECTTACAGA	T <mark>gcacacaca</mark>	AACGCTAAAT			
TTCTGTTTTG	TCTCTACCTA	Ctatctatgt	Accaatetct	Acgtgtgtgt	TTGCGATTTA			
GGTATAAAAA	TGGAATCACT	CTGTAGGCTG	TTTTACCACC	TACTTTACTA	AATTAATGAG			
CCATATTTTT	Accttagtga	Gacatccgac	AAAATGGTGG	Atgaaatgat	TTAATTACTC			
	CCATATITITI ACCTAGEGAI GACATCEGEAI GACATEGEAI ATCAAATCAT TTAATTACTC A→T -152 bp Comment on PP1.1 null allele site							

Development of miniSTRs: Validation
Summary of NIST Concordance Studies
16 standard templates (high quality DNA) compared to Profiler, SGM Plus, and PowerPlex 16 results
16 CEPH family samples (high quality DNA) compared to Profiler Plus and COfiler results
92 aged blood stains (degraded DNA; samples stored at room temp on untreated paper 14-15 years) compared to PowerPlex 16 results
No signficant heterozygote peak imbalance

Development o	fmini	STRs: V	alidat	ion				
TH01 (Genot	yper (Conco	rdanc	e Dat	a on 1	6 Sar	nples
Sample Info	Big Mi	ni TH01	PP16	5 TH01	Profile	er TH01	SGM F	Plus TH01
216	9.3	9.3	9.3	9.3	9.3	9.3	9.3	9.3
219	6	7	6	7	6	7	6	7
220	6	7	6	7	6	7	6	7
223	7	7			7	7	7	7
265	8	8	8	8	8	8	8	8
266	7	7	7	7	7	7	7	7
267	7	9.3			7	9.3	7	9.3
272	7	9	7	9	7	9	7	9
273	7	10	7	10	7	10	7	10
275	7	8	7	8	7	8	7	8
277	6	6	6	6	6	6	6	6
278	7	9	7	9	7	9	7	9
DD	6	7	6	7	6	7	6	7
JB	6	6	6	6	6	6	6	6
DJ	9	9.3	9	9.3	9	9.3	9	9.3
349	7	8	7	8	7	8	7	8
all sa	mple amples	geno 223 and	types d 267 w	are c	ompl tested v	etely with Pow	conco verPlex	ordant 16)

Development of miniSTRs: Validation									
			FGA (Conco	ordanc	e Data	a		
	Big Mi	ni FGA	PP16 FGA		Profiler FGA		SGM I	Plus FGA	
	22.2	24	22.2	24	22.2	24	22.2	24	
	24	27	24	27	24	27	24	27	
	18	24	18	24	18	24	18	24	
	22	22			22	22	22	22	
	24	25	24	25	24	25	24	25	
	21	25	21	25	21	25	21	25	
	20	23			20	23	20	23	
	21	23	21	23	21	23	21	23	
	20	22.2	20	22.2	20	22.2	20	22.2	
	22	22	22	22	22	22	22	22	
	20	23	20	23	20	23	20	23	
	18.2	23	18.2	23	18.2	23	18.2	23	
	19	23	19	23	19	23	19	23	
	21	22	21	22	21	22	21	22	
	21	22	21	22	21	22	21	22	
	19	20	19	20	19	20	19	20	

Big Mini	Measured Mutation Rates								
STR Locus	Maternal Meioses (%)	Paternal Meioses (%)	Null Alleles (%)	Multi-Banded (%)					
CSF1PO	14/47843 (0.03)	311/243124 (0.13)	2/42020 (<0.01)	None reported					
FGA	7/8253 (0.01)	555/189973 (0.29)	2/1104 (0.18)	None reported					
TH01	5/42100 (0.01)	12/74426 (0.02)	2/7983 (0.03)	0/2646 (<0.040)					
трох	2/28766 (0.01)	10/45374 (0.02)	11/43704 (0.03)	13/42020 (0.03)					
VWA	20/58839 (0.03)	851/250131 (0.34)	7/42220 (0.02)	1/6581 (0.02)					
D3S1358	0/4889 (<0.02)	9/8029(0.11)	None reported	None reported					
D5S818	22/60907 (0.04)	194/130833 (0.15)	3/74922 (<0.01)	None reported					
D7S820	14/50827 (0.03)	193/131880 (0.15)	1/42020 (<0.01)	1/406 (0.25)					
D8S1179	5/6672 (0.07)	29/10952 (0.26)	None reported	None reported					
D13S317	33/59500 (0.06)	106/69598 (0.15)	52/62344 (0.08)	None reported					
D16S539	12/42648 (0.03)	40/48760 (0.08)	3/52959 (<0.01)	0/1165 (<0.09)					
D18S51	8/8827 (0.09)	29/9567 (0.30)	None reported	None reported					
D21S11	12/6754 (0.18)	17/6980 (0.24)	1/203 (0.49)	None reported					

Development of miniSTRs: Validation Issues Dye artifacts ABI has offered to share information on their primer purification procedures (Feb 12 meeting with John Butler) - Temporary fix with post-PCR purification · Allelic ladders - Mecki Prinz was approached by Rhoda Roby (ABI) at AAFS meeting and offered ABI allelic ladder materials Availability in commercial kit form - Promega and Applied Biosystems are both aware of this work STR patents? - No problem while this project is still research...

NYC OCME Big Mini Validation Plan (from Mecki Prinz, Feb 8, 2002)

- Test Amplification D21S11 weak allelic ladder 1 ng of 6 known samples Dye artifact peaks removed with Microcon 100 - 377 vs. 310 data Sensitivity Titration
- 5 ng, 2 ng, 1 ng, 0.5 ng, 0.2 ng, 0.1 ng, 0.05 ng in duplicate Degraded DNA
 - 24 DNA IQ tissue samples selected from AA587; low yields with Profiler Plus and COfiler
- Concordance Study - 25 samples exchange between Albany SP and OCME
- · Sizing Precision and Stutter Rates gathered from previous experiments

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Development of miniSTRs: Future Plans

Future Plans with miniSTRs

- NYC OCME -- testing Big Mini pilot materials (primers, ladders, macros, protocols)
- AFDIL -- collaboration to investigate miniplex sensitivity and concordance with field samples
- Ohio University -- work on new primers and miniplex sets and better understanding of degradation effects
- NIST solve dye blob problem and develop new optimized markers ("Autoplex")
- Publish developmental validation of miniSTRs including all primer sequences

Paper in preparation on Big Mini development and testing

Future Plans: Improving Stats, etc

Plans for Improved STR Markers – the "Autoplex" (going beyond the CODIS 13)

- New markers with smaller allele ranges, low stutter, and better characteristics for small PCR products (will make use of Human Genome Project information)
- Additional STRs to aid in large mass disasters to provide higher discrimination power than is possible with 13 CODIS loci
- Coverage of all chromosomes (22 autosomes + X/Y)
- Dual development of primer sets to enable null allele detection
 - large megaplex system for population data collection
 - miniplex systems to aid casework situations

How many more would be markers would be useful?

