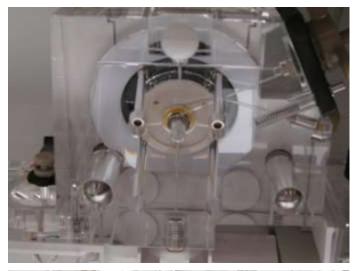
# NIST Validation Studies on the 3500 Genetic Analyzer



Erica L.R. Butts

National Institute of Standards and Technology


Innsbruck, Austria September 5<sup>th</sup>, 2011

### **Outline**

- Details of the ABI 3500 Genetic Analyzer
- Validation design and results with Identifiler and Identifiler Plus
  - Injection parameters and reaction setup
  - Precision and size standard comparison
  - Concordance and mixture evaluation
- Methodology of setting analytical and stochastic thresholds
- Brief overview of signal normalization

## Details of the ABI 3500

No lower pump block (Fewer air bubbles)





# Improved sealing for better temperature control





# **Primary Differences**

|                          | 31xx Platforms                             | 3500 Platforms                                         |
|--------------------------|--------------------------------------------|--------------------------------------------------------|
| Laser                    | Argon ion (AR+) with 488/514 nm wavelength | Single-line 505 nm,<br>solid-state, long-life<br>laser |
| Power Requirement        | 220V                                       | 110V                                                   |
| File<br>Generated        | .fsa files .hid files                      |                                                        |
| Normalization            | None                                       | Instrument-to-<br>instrument; only with<br>AB kits     |
| Optimal Signal Intensity | 1500-3000 RFU                              | 4x greater than 31xx platforms                         |

### What is Validation?

**Section 1.1** (SWGDAM Revised Validation Guidelines) Validation is the process by which the scientific community acquires the necessary information to:

- (a) Assess the ability of a procedure to obtain reliable results.
- (b) Determine the conditions under which such results can be obtained.
- (c) Define the <u>limitations</u> of the procedure.

The validation process identifies aspects of a procedure that are critical and must be carefully controlled and monitored.

## Reliability, Reproducibility, Robustness

# **Experimental Summary**

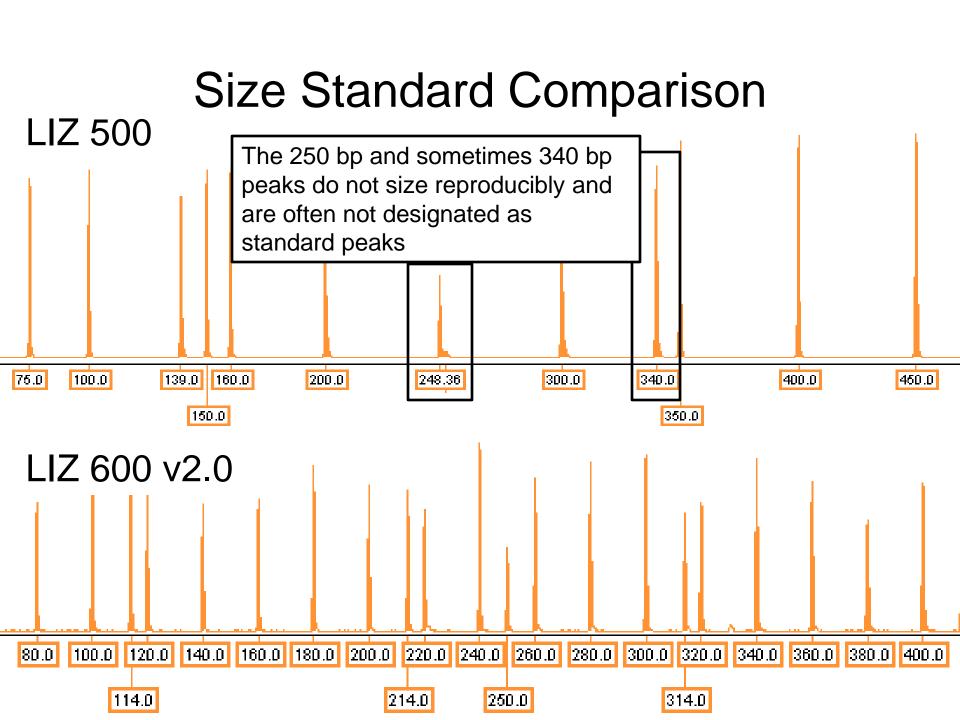
|                 | Test                                                                                  | Types of Samples Used                                                             | Number<br>Examined            |
|-----------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|
| oility          | Size Standard<br>Comparison                                                           | 16 Allelic Ladders per size standard<br>(LIZ 500 vs. LIZ 600 v2.0)                | 32                            |
| Reliability     | Injection 3 samples heterozygous at 15 loci plus Parameters Amelogenin 1 ng DNA input |                                                                                   | 15<br>3 samples per injection |
| ity             |                                                                                       | Allelic Ladders                                                                   | 24                            |
| Reproducibility | Precision                                                                             | 3 samples heterozygous at all 15 loci plus<br>Amelogenin                          | 6                             |
| pro             | Concerdance                                                                           | 50 genomic DNA samples                                                            | 60                            |
| Re              | Concordance                                                                           | SRM 2391b: 10 genomic DNA samples                                                 | 60                            |
| Robustness      | Sensitivity                                                                           | Sensitivity  Dilution series of 3 samples heterozygous at 15 loci plus Amelogenin |                               |
| Robu            | Mixtures                                                                              | Mixture dilution series of 2 samples heterozygous at 15 loci plus Amelogenin      | 28                            |
|                 |                                                                                       | Total Number of Samples                                                           | 249                           |

Identical experiments for Identifiler and Identifiler Plus

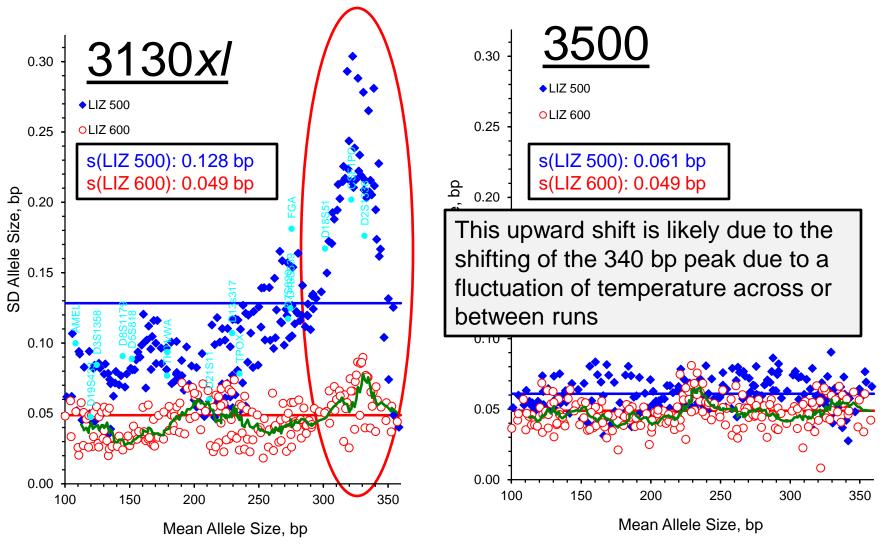
# Size Standard Comparison

|   | 1            | 2            |
|---|--------------|--------------|
| Α | LIZ 500      | LIZ 600 v2.0 |
| В | LIZ 600 v2.0 | LIZ 500      |
| С | LIZ 500      | LIZ 600 v2.0 |
| D | LIZ 600 v2.0 | LIZ 500      |
| Е | LIZ 500      | LIZ 600 v2.0 |
| F | LIZ 600 v2.0 | LIZ 500      |
| G | LIZ 500      | LIZ 600 v2.0 |
| Н | LIZ 600 v2.0 | LIZ 500      |

Individual master mixes created for LIZ 500 and LIZ 600 v2.0 with Identifiler/Identifiler Plus allelic ladders


Injected twice on 3130xl

 Standard injection of 3 kV for 10 seconds


Injected 3 times on 3500

 Default Injection of 1.2 kV for 15 seconds

It is important to determine if one size standard can be used consistently on both the 3130xl and 3500 for proper comparison

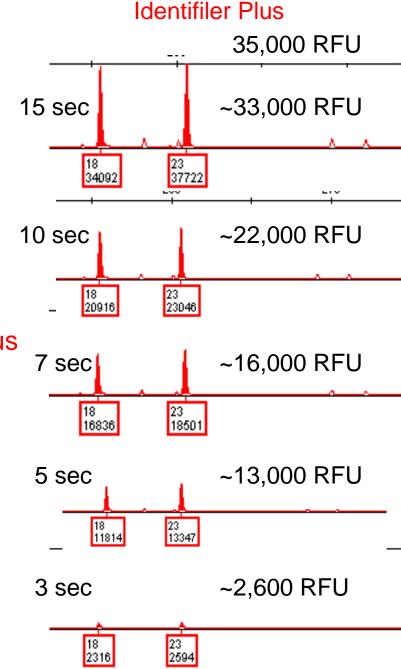


# Size Standard Comparison



LIZ 600 v2.0 generated the most linear results on both the 3130xl and 3500 and was used as the size standard on both instruments for remaining testing

n=20: Identifiler n=15: Identifiler Plus


# Injection Parameters

- Injection voltage/time:
  - 1.2 kV for 15 sec
  - 1.2 kV for 10 sec
  - 1.2 kV for 7 sec
  - 1.2 kV for 5 sec
  - 1.2 kV for 3 sec

IdentifilerIdentifiler Plus

Standard injection parameters set based on samples with:

- 1. No pull-up present
- 2. No drop out present



# Sizing Precision

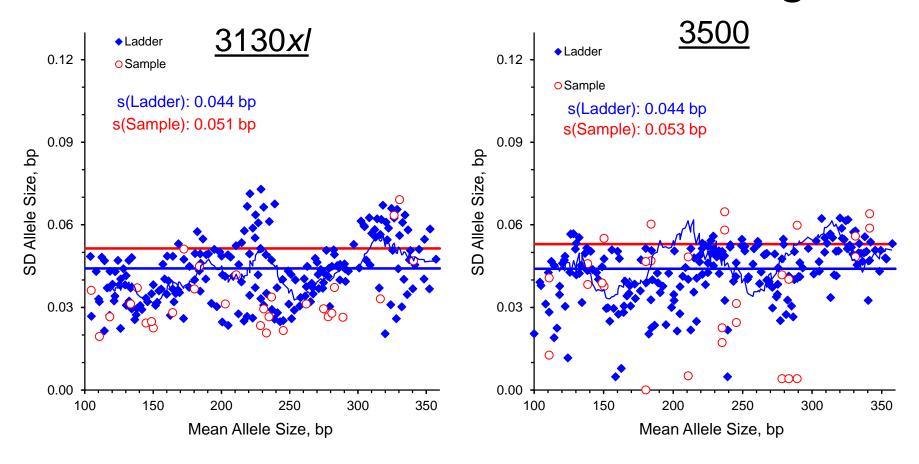
| Identifiler | Identifiler Plus |
|-------------|------------------|
|-------------|------------------|

|   | 1           | 2           | 3                   | 4                   |
|---|-------------|-------------|---------------------|---------------------|
| Α | Identifiler | EB          | Identifiler<br>Plus | EB                  |
| В | Neg         | Identifiler | Neg                 | Identifiler<br>Plus |
| С | Identifiler | EB          | Identifiler<br>Plus | EB                  |
| D | Neg         | Identifiler | Neg                 | Identifiler<br>Plus |
| Е | Identifiler | EB          | Identifiler<br>Plus | EB                  |
| F | Neg         | Identifiler | Neg                 | Identifiler<br>Plus |
| G | Identifiler | Sample      | Identifiler<br>Plus | Sample              |
| Н | Sample      | Identifiler | Sample              | Identifiler<br>Plus |

Identifiler and Identifiler Plus allelic ladders in checkerboard pattern

Neg: PCR blank

PCR primers + water


**EB**: Extraction blank

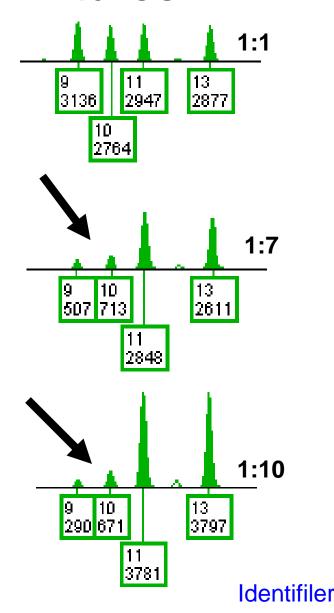
PCR primers + extraction eluent

Sample: 1 ng heterozygous sample at 15 loci plus Amelogenin

Injected 3 times with the newly determined injection parameters

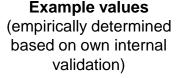
# Precision of Base Pair Sizing




No significant difference between 3130xl and 3500

No significant difference between Identifiler and Identifiler Plus

### Concordance and Mixtures


- 60 samples concordant between 3130xl and 3500
  - Total of 1689 alleles examined

 Minor component identified correctly in a 1:10 mixture ratio



#### Different Threshold Overview





(Greater confidence a sister allele has not dropped out)

#### 350 RFUs

#### Called Peak

(Cannot be confident dropout of a sister allele did not occur)

Stochastic Threshold

The value above which it is reasonable to assume that allelic dropout of a sister allele has not occurred

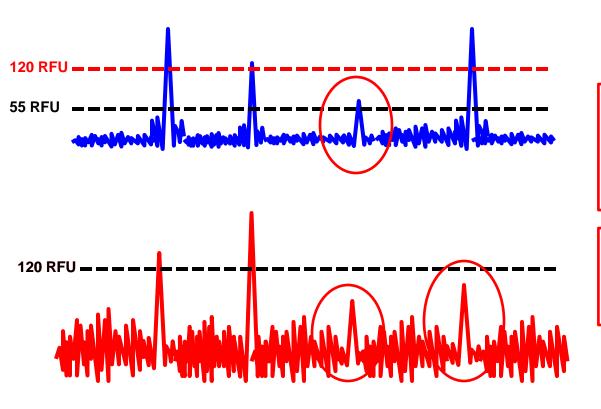
#### 150 RFUs

considered reliable

Peak not

### Analytical Threshold

Minimum threshold for data comparison and peak detection in the DNA typing process


#### Noise

Butler, J.M. (2009) Fundamentals of Forensic DNA Typing. Elsevier Academic Press: San Diego.

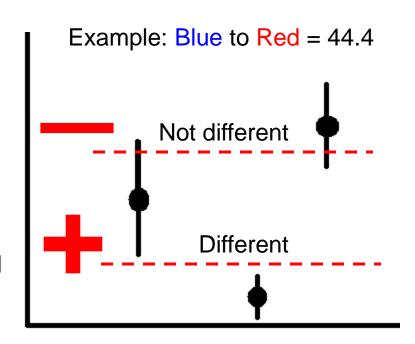
# Analytical Threshold Methodology

- Baseline noise values calculated with data from the sensitivity study (DNA dilution series)
  - Threshold set at 1 RFU for all dye channels
  - Remove calls for all alleles and artifacts (stutter, n+4, pull-up, etc.)
- 4 methods for evaluation of analytical thresholds calculated
- Analytical Threshold: Average RFU + (10 x Standard Deviation)

#### Different Thresholds



Single thresholds for all dye channels assumes all dye channels have the **same** amount of noise


Can cause data to fall below the analytical threshold and not be called

Dye-specific thresholds take into consideration that all dye channels do not have the same level of noise

Can increase the amount of data that is callable

## One Threshold vs. Dye Specific Thresholds

- Evaluation of data to determine the statistical difference between dye channel analytical thresholds
- Calculated statistical difference using a z-test
  - If negative: Not statistically different
    - Error bars overlap
    - One standard analytical threshold can be applied to all dyes
  - If positive: Statistically different
    - Error bars do not overlap
    - Dye specific analytical thresholds need to be applied



n=84 samples

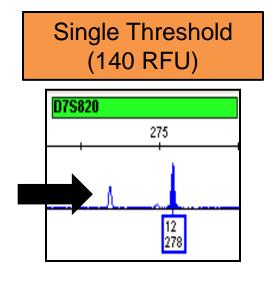
## Analytical Threshold Calculation

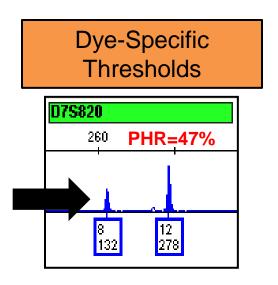
|         | ldentifiler |       |     |     |             |
|---------|-------------|-------|-----|-----|-------------|
| Dye     | Average     | Stdev |     | Max | Calculated  |
| Channel | RFU         | Ota 0 | RFU | RFU | Noise (RFU) |
| Blue    | 9           | 8.4   | 1   | 66  | 93          |
| Green   | 13          | 11.5  | 3   | 84  | 128         |
| Yellow  | 22          | 11.6  | 4   | 88  | 138         |
| Red     | 28          | 8.8   | 10  | 80  | 116         |

|                | Identifiler Plus |       |            |            |                           |
|----------------|------------------|-------|------------|------------|---------------------------|
| Dye<br>Channel | Average<br>RFU   | Stdev | Min<br>RFU | Max<br>RFU | Calculated<br>Noise (RFU) |
| Blue           | 10               | 4.6   | 3          | 68         | 55                        |
| Green          | 16               | 5.6   | 3          | 78         | 72                        |
| Yellow         | 24               | 7.9   | 7          | 63         | 103                       |
| Red            | 31               | 8.9   | 7          | 81         | 120                       |

Single Threshold: 140 RFU

Dye-Specific: Rounded to nearest 5 RFU


Single Threshold: 120 RFU

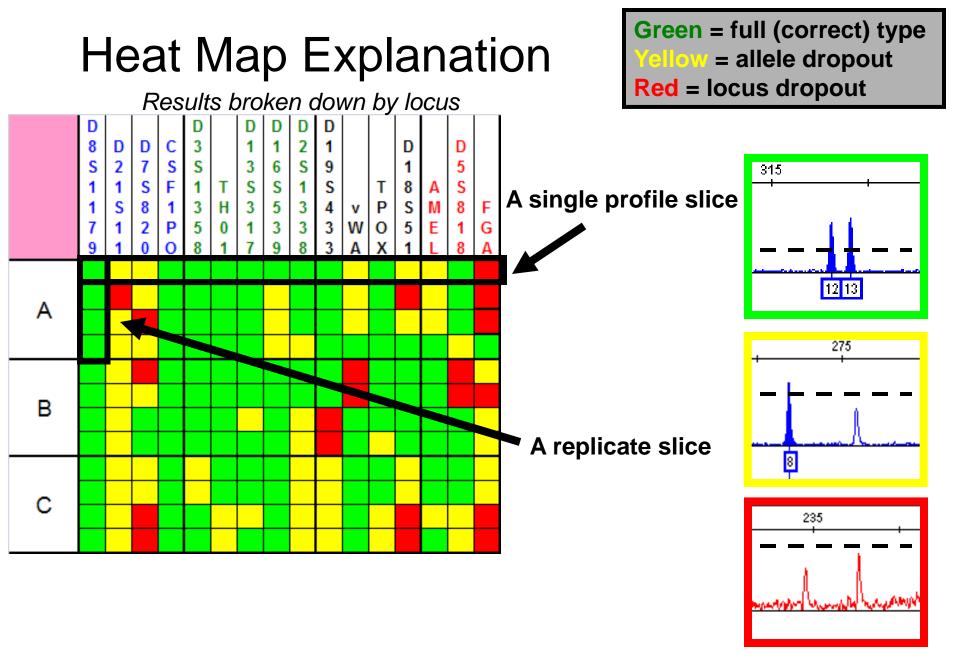

Dye-Specific: Rounded to nearest 5 RFU

- Statistical difference was calculated between dye channels using a z-test
- Statistically each dye channel is <u>different</u> for both <u>Identifiler</u> and <u>Identifiler</u>
  - Must be treated independently

# **Threshold Comparison**

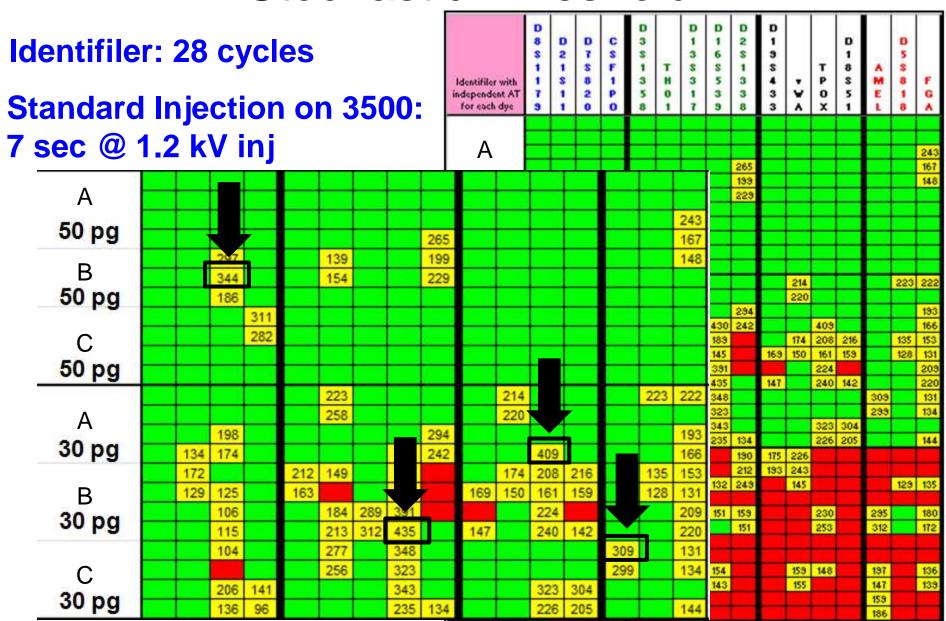
Total of 560 alleles examined (50 pg, 30 pg, and 10 pg) where dropout was observed



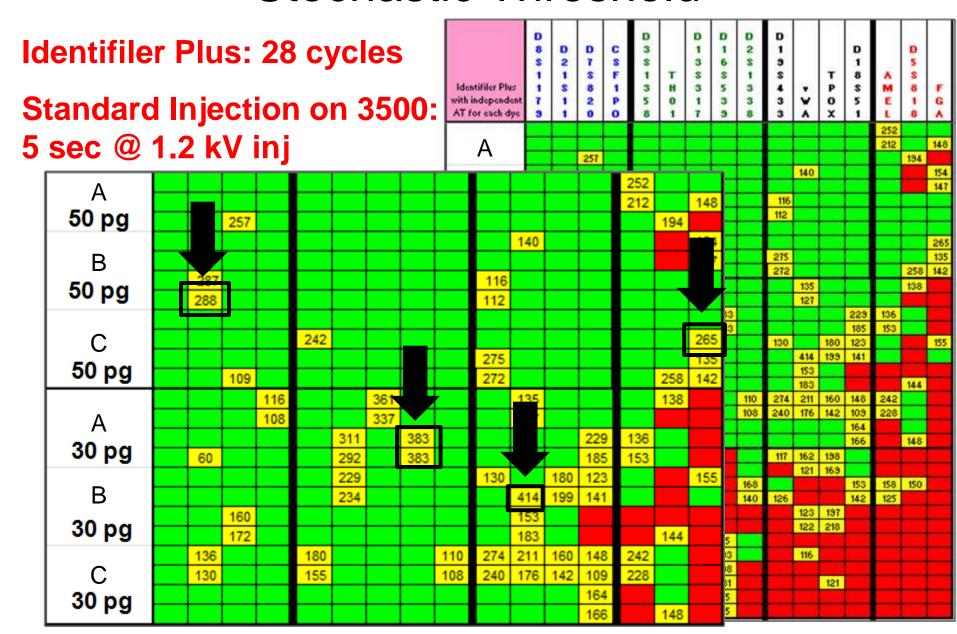



14.8% of the total possible allele calls were lost using a single threshold rather than using dye-specific thresholds with Identifiler

22.0% of the total possible allele calls were lost using a single threshold rather than using dye-specific thresholds with Identifiler Plus


# Setting Stochastic Methodology

- Calculated with data from the sensitivity study (DNA dilution series) analyzed with dye specific analytical thresholds
- Examination of sample amounts where dropout is observed (50 pg, 30 pg, 10 pg for Identifiler and Identifiler Plus)
  - Focus on sample amounts with dropout present to examine stochastic effects including severe imbalance of heterozygous alleles and allele dropout
- Stochastic Threshold: The RFU value of <u>highest</u> surviving false homozygous peak per dye channel




This is an easy way to look at a lot of data at once

## Stochastic Threshold



## Stochastic Threshold



# Summary of Thresholds

Both AT and ST values rounded to the nearest 5 RFU value

Expected peak height ratio (PHR) is assuming the possibility of having one peak at the AT and one peak at the ST

Expected PHR = AT/ST

| lde    | Identifiler: 7 sec @ 1.2 kV (28 cycles) |                                    |             |              |  |  |
|--------|-----------------------------------------|------------------------------------|-------------|--------------|--|--|
|        | AT<br>(RFU)                             | Highest<br>Surviving<br>Peak (RFU) | ST<br>(RFU) | Expected PHR |  |  |
| Blue   | 95                                      | 344                                | 345         | 28%          |  |  |
| Green  | 130                                     | 435                                | 435         | 30%          |  |  |
| Yellow | 140                                     | 409                                | 410         | 34%          |  |  |
| Red    | 120                                     | 309                                | 310         | 39%          |  |  |

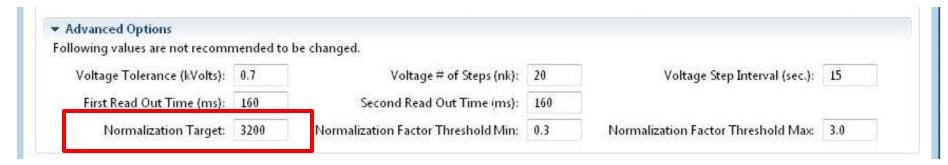
| Identifiler Plus: 7 sec @ 1.2 kV (28 cycles) |             |                                    |             |              |  |
|----------------------------------------------|-------------|------------------------------------|-------------|--------------|--|
|                                              | AT<br>(RFU) | Highest<br>Surviving<br>Peak (RFU) | ST<br>(RFU) | Expected PHR |  |
| Blue                                         | 55          | 288                                | 290         | 19%          |  |
| Green                                        | 75          | 383                                | 385         | 19%          |  |
| Yellow                                       | 105         | 414                                | 415         | 25%          |  |
| Red                                          | 120         | 265                                | 265         | 45%          |  |

# Consumable RFID Tracking Limits

|         | RFID Hard<br>Stops                                | Usage Comments From a Research Laboratory Standpoint                                                                                                                                                                                                                                                                               |
|---------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Array   | None                                              | <ol> <li>Very easy to change between HID and sequencing</li> <li>Array from validation was stored at least twice and reinstalled on 3500 during validation</li> </ol>                                                                                                                                                              |
| Buffer  | Expiration Date 7 Days on Instrument # Injections | <ol> <li>Can no longer use in-house buffer</li> <li>Very easy to change on the instrument (snap-and-go)</li> </ol>                                                                                                                                                                                                                 |
| Polymer | Expiration Date<br># Samples<br># Injections      | <ol> <li>Hard stop with the expiration date has caused us to discard unused polymer we would have otherwise kept on the instrument</li> <li>~50% of total polymer remains in the pouch after "consumption"</li> <li>Expiration dates have changed purchasing strategy (smaller batches, based on ongoing project needs)</li> </ol> |

## Validation Conclusions

- The 3500 has proven to be reliable, reproducible and robust
  - Out of 498 samples between Identifiler and Identifiler Plus only 5 required reinjection
- Dye specific analytical thresholds resulted in less allelic and full locus dropout than applying one analytical threshold to all dyes
- Stochastic thresholds are linked to analytical thresholds
  - If the analytical threshold is adjusted, the stochastic threshold should be reevaluated along with expected peak height ratios
    - Requires consideration for overall interpretation workflow which we are still evaluating
- RFID tracking decreases flexibility in our research experience


# What is Normalization and how does it work?

### Normalization of Data

- Recommended to compare signal between instruments
- Motivation mainly for large laboratories with many instruments
  - Correct for signal variation between instruments
- Can be used with a single instrument
  - Correct for signal variation between single and multiple injections

### Normalization Definitions

- Normalization Target (NT)
  - Requires the use of LIZ 600 v2.0 size standard
  - Average peak heights of 11 peaks within LIZ 600 v2.0 selected for peak height consistency across lots
  - Applied within data collection software prior to running samples



### Normalization Definitions

- Normalization Factor (NF)
  - Adjustment needed for individual samples to reach the Normalization Target value
  - Full signal adjustment (baseline, peaks, artifacts, etc)
    - Either increase or decrease signal

#### Sample Information

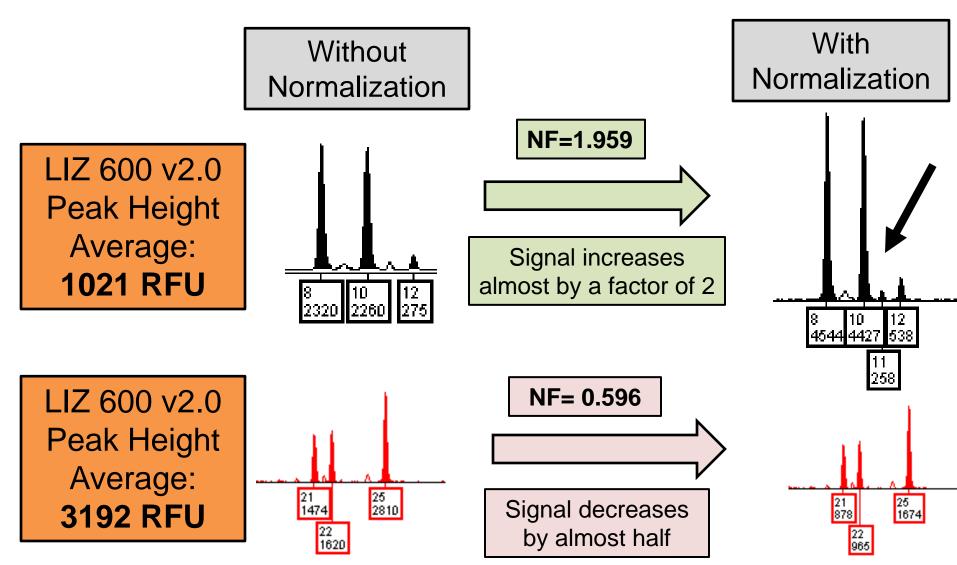
Sample File : Ladder\_A01\_01.hid

Sample Name : Ladder

Sample Origin Path : C:\Documents and Settings\ericab\My Documents\Erica\3500 Validation\Run Folders\3500\Normalization\Mixtures\Run

2011-05-12-10-45-50-422\Identifiler\Inj1 2011-05-12-10-48-10-679\Ladder\_A01\_01.hid

Status Message : Analyzed File Source : Disk media


Re-Injection : N.

Assay Name : Identifiler
Assay Version : v1.0.0

Normalization Factor : 0.995

# Normalization Example

Theoretical Normalization Target: 2000 RFU



#### **Future Work**

- Validation of additional kits (Promega)
- More extensive review of the impact of thresholds on interpretation
  - Interaction between analytical and stochastic thresholds alongside peak height ratios
- More extensive review of normalization
  - Do thresholds change when employing normalization?

## Acknowledgments

#### Forensic DNA Team



John Butler



Mike Coble



Becky Hill



Margaret Kline

#### Data Analysis Support



Dave Duewer

#### **DNA Biometrics Team**



Pete Vallone



Kristen Lewis O'Connor

Funding from the **National Institute of Justice (NIJ)** through NIST Office of Law Enforcement Standards

Funding from the **FBI Biometrics Center of Excellence** 'Forensic DNA Typing as a Biometric Tool'

Jeff Sailus-Applied Biosystems

#### **Contact Info:**

erica.butts@nist.gov

+1-301-975-5107



