NGS and Implications for Mixture Analysis

el Coble, Ph.D. rine Butler Gettings, Ph.D. rch Biologists d Genetics Group

Utilizing Data from Next-Generation Sequence nal Symposium on Human Identification

NIST d Institute of ds and Techn Updated slides: http://www.cstl.nist.gov/biotech/strbase/pub_pres/

ISHI_NGS_Workshop_2015_Coble-Gettings.pdf

NGS Implications for Mixtures Questions

Questions of Utility

- · Which STR loci have the most overlapping alleles?
- · Which STR loci are the most likely to be aided by sequence?

repeat region vs flank Validation Questions - General

- · What are the appropriate analytical and stochastic thresholds for NGS data?
- Are PHR in NGS consistent with CE?
- this can be greatly affected by library preparation size selection steps
- · How many individuals do we need in sequence allele frequency databases?
- How will we handle the increased population specificity in repeat region sequences and flanking SNPs? · How will NGS data affect the interpretation of stutter artifacts?

Validation Questions – Mixture Specific

- · How will NGS affect the determination of number of contributors?
- Probabilistic software is making this moot for CE data
- Are mixture ratios in NGS consistent with CE?

NGS of STR Mixtures - Proof of Concept

Created 10 difficult 2-person mixtures by CE

- 9:1 ratio
- · Maximal overlapping alleles
- · Very few loci have four distinguishable alleles by CE

Inferred sequences from NGS data

"Best case" help from NGS in 2-person mixtures

Does not include help with stutter

	N	GS Mixt	ure S	Study
ý	Are mixture	ratios by NGS th	e same as 1	nixture ratios by CE
		CE		NGS
	Loci	PowerPlex Fusion + PowerPlex Y23	•	PowerSeq Auto + Y
	Input DNA	0.5 ng each	•	0.5 ng total
	Amp Parameters	30 cycles	•	30 cycles, same as PPF
	Everything Else	3500xL		TruSeq PCR free Library Prep, MiSeq v3

		Ν	IG	S	Mi	xtı	lre	e S	tu	dy		
	1	2	3	4	5	6	7	8	9	10	11	12
۸	Α	в	м	9:1 A/B	9:1 A/B	9:1 A/B	19:1 AM	19:1 AM	19:1 A/M	8:1:1 A/B/M	8:1:1 A/B/M	8:1:1 A/B/M
в	1:1 A/B	1:1 AM	1:1 B/M	9:1 B/A	9:1 B/A	9:1 B/A	19:1 MA	19:1 MA	19:1 MA	1:8:1 A/B/M	1:8:1 A/B/M	1:8:1 A/B/M
с	3:1 A/B	3:1 A/B	3:1 A/B	9:1 AM	9:1 AM	9:1 A/M	19:1 B/M	19:1 B/M	19:1 B/M	1:1:8 A/B/M	1:1:8 A/B/M	1:1:8 A/B/M
D	3:1 B/A	3:1 B/A	3:1 B/A	9:1 M/A	9:1 M/A	9:1 M/A	19:1 MB	19:1 MB	19:1 MB	18:1:1 A/B/M	18:1:1 AB.M	18:1:1 A/B/M
E	3:1 AM	3:1 AM	3:1 AM	9:1 B/M	9:1 B/M	9:1 B/M	1:1:1 ABM	1:1:1 A/B/M	1:1:1 ABM	1:18:1 A/B/M	1:18:1 ABM	1:18:1 A/B/M
F	3:1 MA	3:1 M/A	3:1 M/A	9:1 M/B	9:1 MB	9:1 M/B	3:1:1 A/B/M	3:1:1 A/B/M	3:1:1 A/B/M	1:1:18 A/B/M	1:1:18 AB.M	1:1:18 A/B/M
G	3:1 B/M	3:1 B/M	3:1 B/M	19:1 A/B	19:1 AB	19:1 A/B	1:3:1 A/B/M	1:3:1 A/B/M	1:3:1 AB/M	9:9:1 AB/M	9:9:1 A/B/M	9:9:1 A/B/M
н	3:1 M/B	3:1 MB	3:1 M/B	19:1 B/A	19:1 B/A	19:1 B/A	1:1:3 A/B/M	1:1:3 A/B/M	1:1:3 ABM	1:9:9 AB/M	1:9:9 A/B/M	1:9:9 A/B/M

	NG	àS M	ixtur	e S	tudy	1:	9:9	
8							. T	r" Anat Sanya fu Caleso
						Fork3		P Hak Saveh for Sales
						. 19		T Ret Save for Decis
					9 <u>9</u>			

Locus	Additional Alleles	Help with Stutter
D2S441	1	
D8S1179	1	
D3S1358	1	
D12S391	1	1
vWA		1
D1S1656		2
D1S1656		2

NGS Implications for Mixtures Conclusions

- Sequencing forensic STR loci can uncover underlying sequence variation in the repeat and flanking regions
- This will increase allelic diversity, thus increasing the ability to discriminate among individuals in a mixture
- Additionally, sequence specific stutter ratios may improve mixture models

NGS Implications for Mixtures Conclusions

The gain is difficult to quantify

Prior to implementation:

- Sequence-based allele frequency databases
- Characterization of peak height ratios and stutter by NGS (assay and locus specific)
- Probabilistic genotyping software amenable to sequence data (and sequence-based stutter!)

