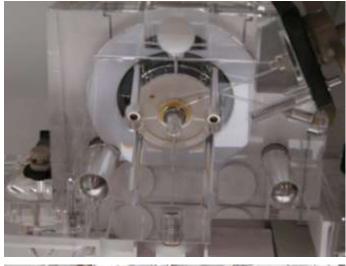
NIST Validation Studies on the 3500 Genetic Analyzer

Erica L.R. Butts

U.S. National Institute of Standards and Technology


22nd International Symposium of Human Identification National Harbor, MD October 6, 2011

Outline

- Details of the ABI 3500 Genetic Analyzer
- Validation design and results with Identifiler Plus and PowerPlex 16 HS and
 - Injection parameters and reaction setup
 - Precision and size standard comparison
 - Concordance and mixture evaluation
- Methodology of setting analytical and stochastic thresholds
- Brief overview of signal normalization
- Consumable usage comments from a research laboratory standpoint
- SRM2391c Update

Details of the ABI 3500

No lower pump block (Fewer air bubbles)

Improved sealing for better temperature control

Primary Differences

	31xx Platforms	3500 Platforms	
Laser	Argon ion (AR+) with 488/514 nm wavelength	Single-line 505 nm, solid-state, long-life laser	
Power Requirement	220V	110V	
File Generated	.fsa files	.hid files	
Normalization	None	Instrument-to- instrument; only with AB kits	
Optimal Signal Intensity	1500-3000 RFU	~4x greater than 31xx platforms	

What is Validation?

Section 1.1 (SWGDAM Revised Validation Guidelines) Validation is the process by which the scientific community acquires the necessary information to:

(a) Assess the ability of a procedure to obtain reliable results.

(b) Determine the conditions under which such results can be obtained.

(c) Define the limitations of the procedure.

The validation process identifies aspects of a procedure that are critical and must be carefully controlled and monitored.

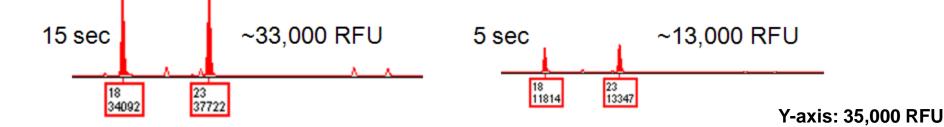
Reliability, Reproducibility, Robustness

Experimental Summary

	Test		Types of Samples Used	Number Examined
У		Standard	15 Allelic Ladders per size standard (LIZ 500 vs. LIZ 600 v2.0)	30
Reliability		Standard Dilution	Samples heterozygous at 15 loci plus Amelogenin at 1.0 ng DNA input	16
Reli			Amplified Extraction Blanks	4.5
		jection ameters*	3 male samples heterozygous at 15 loci 1 ng DNA input	15 3 samples per injection
Reproducibility	Pr	ecision*	Allelic Ladders*	24
luci			3 male samples heterozygous at 15 loci	6
oroc	Con	cordance*	50 genomic DNA samples	60
Rel	CON	condance	SRM 2391b: 10 genomic DNA samples	00
tness	Sensitivity*		Dilution series of 3 male samples heterozygous at 15 loci	84 4 replicates of each dilution series
Robustness	Mixtures*		Mixture dilution series of 2 male samples heterozygous at 15 loci at 1.0 ng DNA input (1:1, 1:2, 1:3, 1:5, 1:7, 1:9, 1:10, 10:1, 9:1, 7:1, 5:1, 3:1, 2:1)	
	Total		Number of Samples: Identifiler Plus	247
Total N		Total N	Number of Samples: PowerPlex 16 HS	227

*Identical experiments for Identifiler Plus and PowerPlex 16 HS

n=30 allelic ladders (ILS Precision) n=15 samples (Injection Parameters)

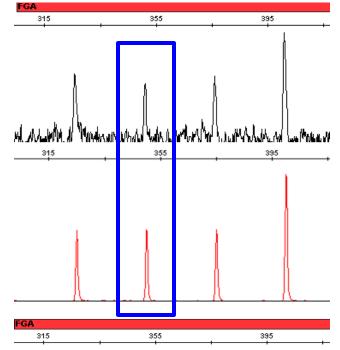

Identifiler Plus: Reliability

- No significant difference between the LIZ500 and LIZ600 v2.0 size standards
- Injection parameters set for ½ PCR reactions:

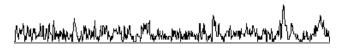
28 cycles

- 3500 Default: 1.2 kV for 15 s
- Identifiler Plus: 1.2 kV for 5 s

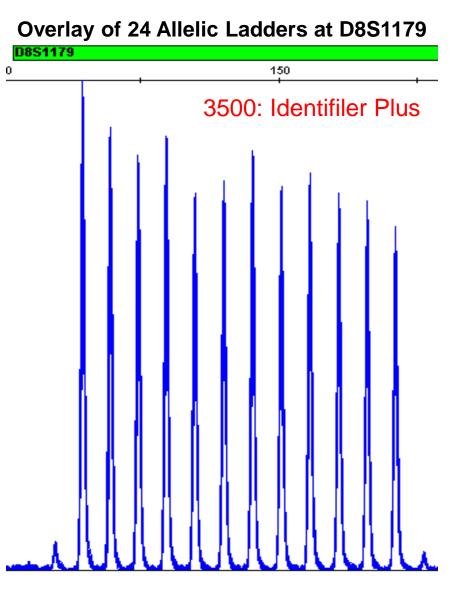
n=16 allelic ladders (Size Standard Dilution) n=15 samples (Injection Parameters)


PowerPlex 16 HS: Reliability

- Dilution of ILS 600 to eliminate bleedthrough of the size standard into the yellow dye channel
 - 0.25 µl ILS 600 + 9.75 µl HiDi per sample corrected the bleed-through
- Injection parameters set for ½ PCR reactions:

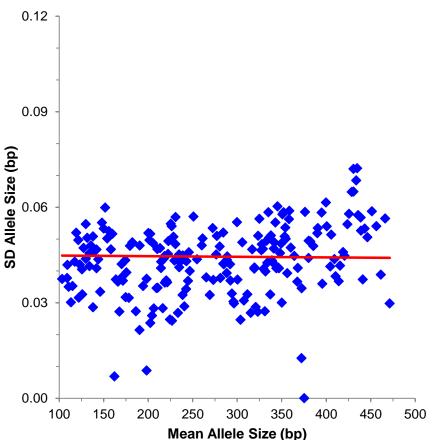

30 cycles

- 3500 Default: 1.2 kV for 15 s
- PowerPlex 16 HS: 1.2 kV for 10 s


0.25 µl ILS 600 / sample

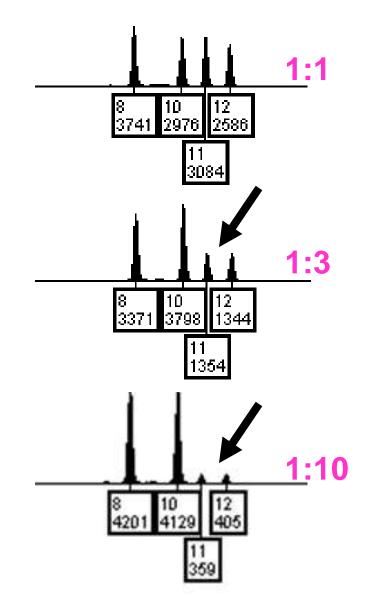
Y-axis: 50 RFU

Identifiler Plus: Reproducibility


- 60 samples concordant between 3130*xl* and 3500
 - Total of 1689 alleles examined
- Precision of base pair sizing ±0.04 bp between allelic ladders and samples tested
 - No significant difference between the 3130*xl* and 3500

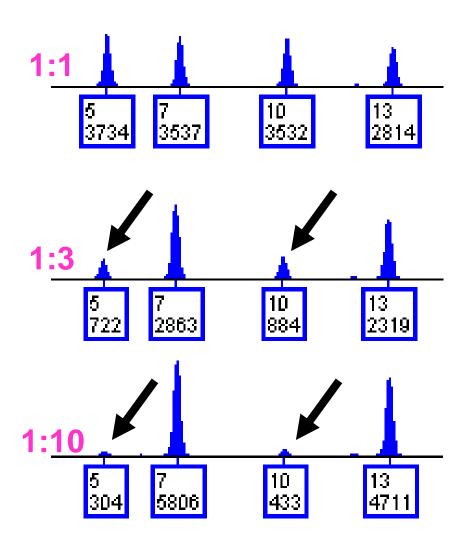
PowerPlex 16 HS: Reproducibility

- 60 samples concordant between 3130*xl* and 3500
 - Total of 1688 alleles examined
- Precision of base pair sizing ±0.05 bp between allelic ladders and samples tested
 - No significant difference between PowerPlex 16 HS and Identifiler Plus


PP16HS Base Pair Precision

n=28 samples (Mixture Study) n=84 samples (Sensitivity)

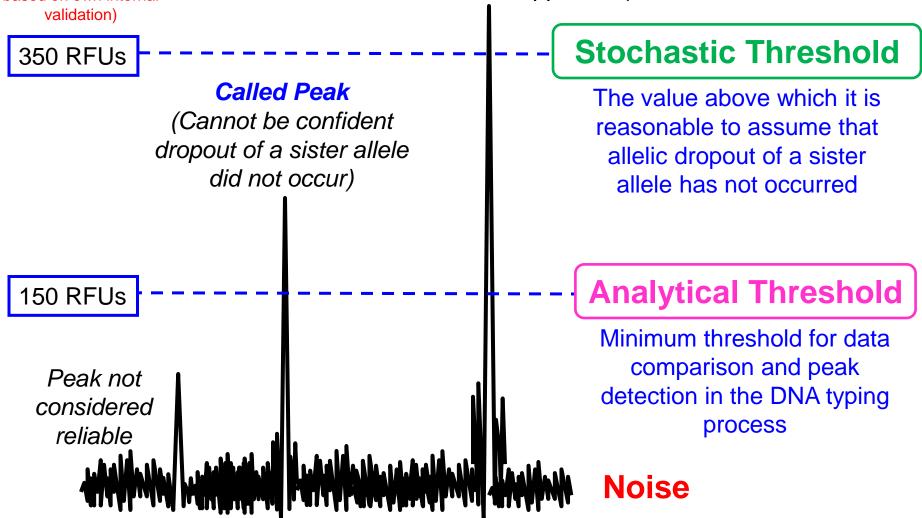
Identifiler Plus: Robustness


- Minor component identified correctly in a 1:10 mixture ratio
- Sensitivity data examined to set analytical and stochastic thresholds
 - Full (correct) profiles observed from 1.0 ng to 100 pg

n=28 samples (Mixture Study) n=84 samples (Sensitivity)

PowerPlex 16 HS: Robustness

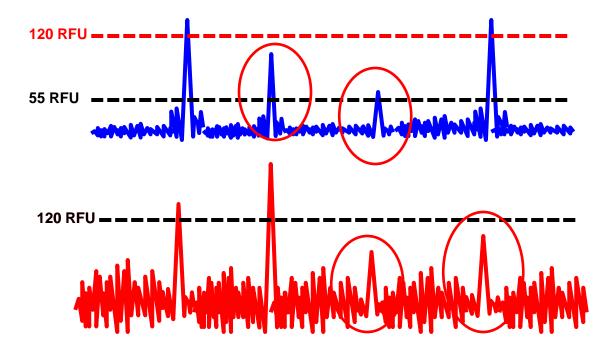
- Minor component identified correctly in a 1:10 mixture ratio
- Sensitivity data examined to set analytical and stochastic thresholds
 - Full (correct) profiles observed from 1.0 ng to 100 pg


Different Threshold Overview

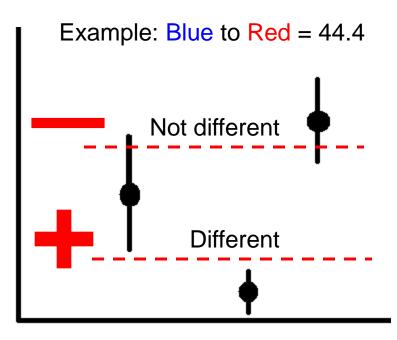
Example values (empirically determined

based on own internal

Called Peak


(Greater confidence a sister allele has not dropped out)

Butler, J.M. (2009) Fundamentals of Forensic DNA Typing. Elsevier Academic Press: San Diego.


Universal vs. Dye-specific

- Universal analytical threshold assumes all dye channels have the same amount of noise
- Dye-specific analytical threshold take into consideration that all dye channels do not have the same level of noise

Statistical Difference Calculation

- Evaluation of data to determine the statistical difference between dye channel analytical thresholds
- Calculated statistical difference using a z-test
- If negative: Not statistically different
 - Error bars overlap
 - One standard analytical threshold can be applied to all dyes
- <u>If positive</u>: Statistically different
 - Error bars do not overlap
 - Dye specific analytical thresholds need to be applied

Statistical Difference Calculation

- Dye channels were <u>not statistically different</u> for PowerPlex 16 HS
 - Ability to use one universal threshold for all dye channels
- Dye channels were <u>statistically different</u> for Identifiler Plus
 - Each dye channel mush be treated independently

Analytical Threshold Methodology

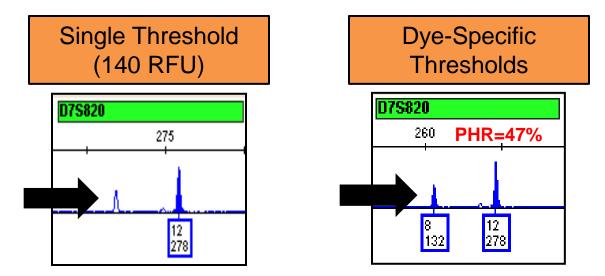
- Baseline noise values calculated with data from the sensitivity study (DNA dilution series)
 - Threshold set at 1 RFU for all dye channels
 - Remove calls for all alleles and artifacts (stutter, n+4, pull-up, etc.)
- 4 methods to evaluate analytical thresholds calculated
- <u>Analytical Threshold</u>: Average RFU + (10 x Standard Deviation)

n=84 samples

Analytical Threshold Calculation

Identifiler Plus							
DyeAverage RFUMinMaxCalculated Noise (RFU)Dye-S						Dye-Specific	
Blue	10	4.6	3	68	55	55	
Green	16	5.6	3	78	72	75	
Yellow	24	7.9	7	63	103	105	
Red	31	8.9	7	81	120	120	

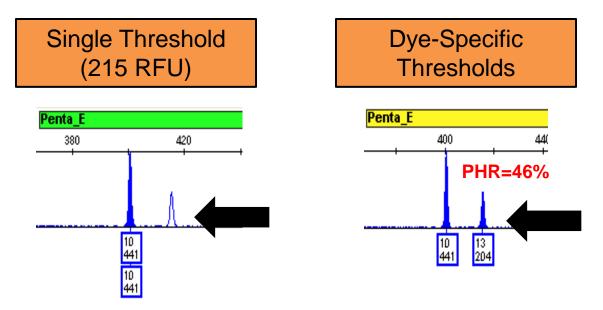
Universal Threshold: 120 RFU


Dye-Specific: Rounded to nearest 5 RFU

PowerPlex 16 HS							
DyeAverage RFUMinMaxCalculate CalculateChannelRFUStdevRFURFUNoise (RF							
Blue	16	17.4	2	99	190		
Green	20	19.3	2	99	212		
Yellow	18	119.3	2	99	211		

Universal Threshold: 215 RFU

Threshold Comparison: Identifiler Plus


Total of 560 alleles examined (50 pg, 30 pg, and 10 pg) where dropout was observed

22.0% of the total possible allele calls were lost using a single threshold rather than using dye-specific thresholds with Identifiler Plus

Threshold Comparison: PowerPlex 16 HS

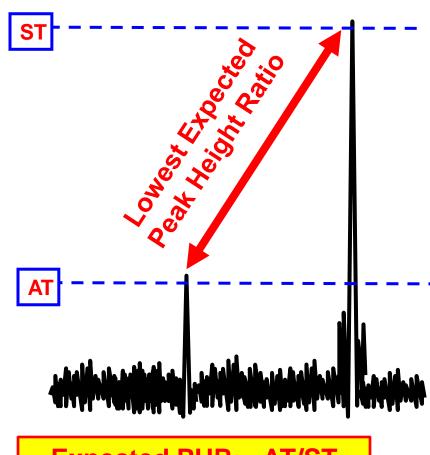
Total of 560 alleles examined (50 pg, 30 pg, and 10 pg) where dropout was observed

Employing a **dye-specific** threshold recovered **less than 1.0%** of the possible allele calls which were lost with a universal threshold.

Setting Stochastic Methodology

- Analyzed data from the sensitivity study (DNA dilution series)
 - Dye-specific analytical thresholds for Identifiler Plus
 - Universal analytical threshold for PowerPlex 16 HS
- Examined sample amounts where dropout was observed (50 pg, 30 pg, 10 pg)
 - Used to examine stochastic effects including severe imbalance of heterozygous alleles and allele dropout
- Stochastic Threshold: Determined by the best fit of the data produced within the sensitivity study (DNA dilution series)

Stochastic Threshold Calculations


	No false homo above 41		No false homozygote calls above 935 RFU	
	Identifiler Plus ST (RFU)% False Homozygote Calls		PowerPlex 16 HS ST (RFU)	% False Homozygote Calls
AVG RFU	160	36.9	365	37.4
AVG + 1SD	235	16.4	515	12.9
AVG + 2SD	301	4.9	665	6.8
AVG + 3SD	385	0.8	810	2.1
MAX RFU	415 0.0		935	0.0
	Injection: 1.2 kV for 5 sec PCR Cycles: 28		Injection: 1.2 PCR Cyc	

n=84 samples

Summary of Thresholds

Identifiler Plus 5 sec @ 1.2 kV (28 cycles)							
AT ST Lowest (RFU) (RFU) PHR							
Blue	55	290	19%				
Green	75	385	19%				
Yellow	105	415	25%				
Red	120	265	45%				

PowerPlex 16 HS 10 sec @ 1.2 kV (30 cycles)							
AT ST Lowest (RFU) (RFU) PHR							
All Dyes 215 665 32%							

Expected PHR = AT/ST

Validation Conclusions

- The 3500 has proven to be reliable, reproducible and robust
 - Out of 247 samples with Identifiler Plus only 3 required reinjection
- Universal analytical thresholds may result in more allelic and full locus dropout (kit and condition dependent)
- Stochastic thresholds are <u>linked</u> to analytical thresholds
 - If the analytical threshold is adjusted, the stochastic threshold should be reevaluated along with expected peak height ratios
 - Requires consideration for overall interpretation workflow which we are still evaluating
- There may be occasions where the data falls outside the bounds of the stochastic threshold leading to potential false homozygote calls
- Increase of cycle number can impact the observed stochastic effects

What is Normalization and how does it work?

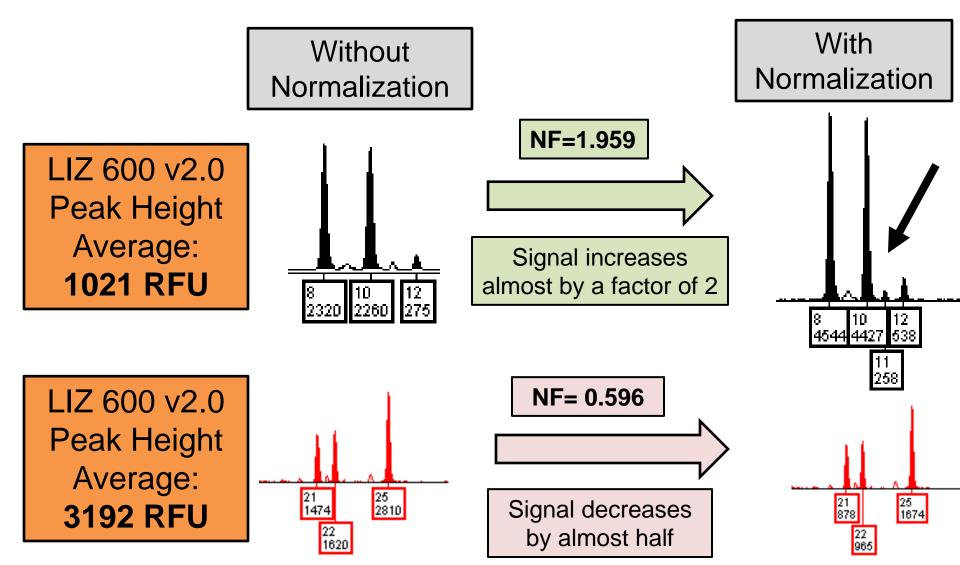
Normalization of Data

- Recommended to compare signal between instruments
- Motivation mainly for large laboratories with many instruments
 - Correct for signal variation between instruments
- Can be used with a single instrument
 - Correct for signal variation between single and multiple injections

Normalization Definitions

- Normalization Target (NT)
 - Requires the use of LIZ 600 v2.0 size standard
 - Average peak heights of 11 peaks within LIZ 600 v2.0 selected for peak height consistency across lots
 - Applied within data collection software prior to running samples

 Advanced Options 					
ollowing values are not recomm	nended to	be changed.			
Voltage Tolerance (kVolts):	0.7	Voltage # of Steps (nk):	20	Voltage Step Interval (sec.):	15
First Read Out Time (ms):	160	Second Read Out Time (ms):	160		
Normalization Target:	3200	Normalization Factor Threshold Min:	0.3	Normalization Factor Threshold Max	3.0


Normalization Definitions

- Normalization Factor (NF)
 - Adjustment needed for individual samples to reach the Normalization Target value
 - Full signal adjustment (baseline, peaks, artifacts, etc)
 - Either increase or decrease signal

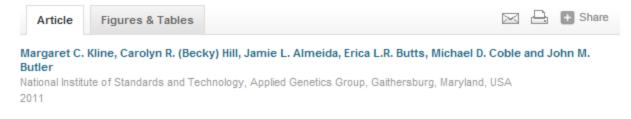
Sample Information	
Sample File	: Ladder_A01_01.hid
Sample Name	: Ladder
Sample Origin Path	: C:\Documents and Settings\ericab\My Documents\Erica\3500 Validation\Run Folders\3500\Normalization\Mixtures\Run
2011-05-12-10-45-50-42	2\Identifiler\Inj1 2011-05-12-10-48-10-679\Ladder_A01_01.hid
Status Message	: Analyzed
File Source	: Disk media
Re-Injection	: NA
Assay Name	: Identifiler
Assay Version	: v1.0.0
Normalization Factor	: 0.995

Normalization Example

Theoretical Normalization Target: 2000 RFU

Consumable RFID Tracking Experience Within a Research Laboratory

Consumable RFID Tracking Limits


	RFID Hard Stops	Usage Comments From a Research Laboratory Standpoint
Array	None	 Very easy to change between HID and sequencing Array from validation was stored at least twice and reinstalled on 3500 during validation
Buffer	Expiration Date 7 Days on Instrument # Injections	 Can no longer use in-house buffer Very easy to change on the instrument (snap-and-go)
Polymer	Expiration Date # Samples # Injections	 Hard stop with the expiration date has caused us to discard unused polymer we would have otherwise kept on the instrument ~50% of total polymer remains in the pouch after "consumption" Expiration dates have changed purchasing strategy (smaller batches, based on ongoing project needs)

SRM 2391c Update

The Latest and Greatest NIST PCR-Based DNA Profiling Standard: Updates and Status of...

Sept. 29[,] 2011 *Profiles in DNA*

The Latest and Greatest NIST PCR-Based DNA Profiling Standard: Updates and Status of Standard Reference Material® (SRM) 2391c

http://www.promega.com/resources/articles/profiles-in-dna/2011/the-latest-and-greatestnist-pcr-based-dna-profiling-standard/

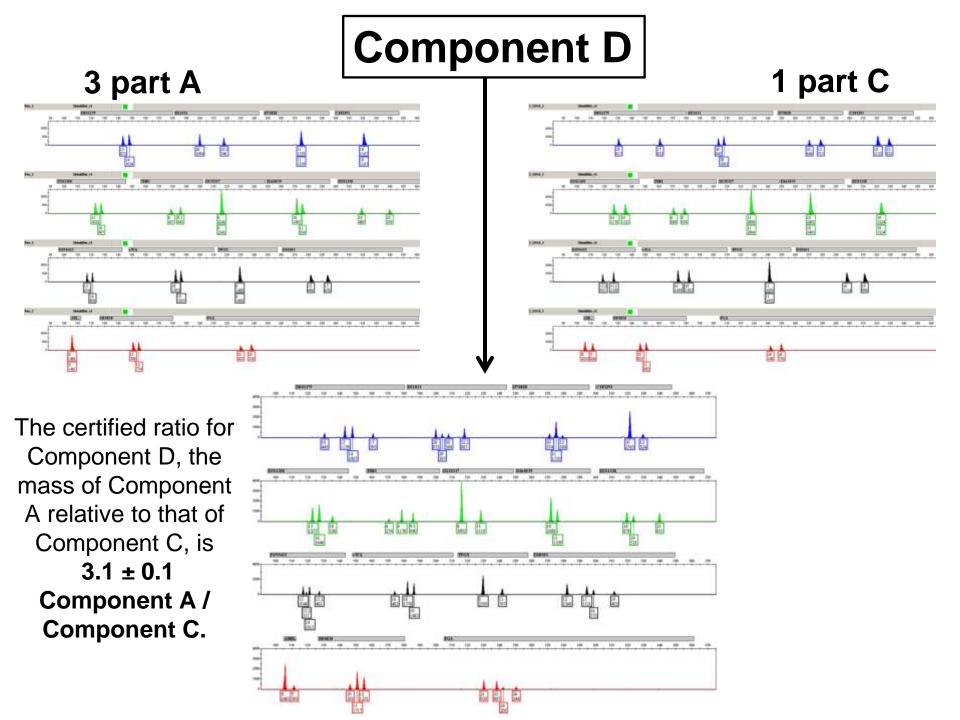
SRM 2391c

Produced with an entirely new set of genomic DNA samples.

9947a & 9948 are NOT included.

https://www-s.nist.gov/srmors/view_detail.cfm?srm=2391C

Description of Components in SRM 2391c


Component	Description	Quantity ^a
А	50 μL of anonymous female genomic DNA	1.4 – 1.9 ng DNA/µL
В	50 µL of anonymous male genomic DNA	1.3 – 1.5 ng DNA/µL
С	50 µL of anonymous male genomic DNA	1.3 – 2.0 ng DNA/µL
D	50 µL of mixed-source (Components A and C)	1.4 – 2.0 ng DNA/µL
E	Two 6 mm punches of CRL-1486 cells spotted on 903 paper	7.5 x10 ⁴ cells per punch
F	Two 6 mm punches of HTB-157 cells spotted on FTA paper	7.5 x10 ⁴ cells per punch

^a DNA concentrations and cell counts are nominal values and are **not** intended for use as quantitative standards.

STR Genotyping kits and primer mixes used at NIST to certify SRM 2391c

	Primer Mixes		
Life Technologies	Promega	Qiagen	NIST
Identifiler	Powerplex 16	ESSplex	26plex
Identifiler Plus	Powerplex 16 HS	IDplex	miniSTRs
NGM	Powerplex ESX 17		
NGM SElect	Powerplex ESI 17		
COfiler	Powerplex ES		
Profiler	Powerplex S5		
Profiler Plus	Powerplex Y		
Profiler Plus ID	FFFL		
SGM Plus			
SEfiler	All results are cond	cordant ad	cross all kits.
MiniFiler			
Yfiler			

In total there is data for 51 autosomal STRs and 17 Y-STRs

Acknowledgments

Forensic DNA Team

John Butler Mike Coble

Funding from the **National Institute of Justice (NIJ)** through NIST Office of Law Enforcement Standards

Becky Hill Margaret Kline Data Analysis Support

Dave Duewer Pete Vallone

Kristen Lewis O'Connor

Funding from the **FBI Biometrics Center** of **Excellence** 'Forensic DNA Typing as a Biometric Tool'

DNA Biometrics Team

Jeff Sailus with Applied Biosystems

Contact Info: erica.butts@nist.gov +1-301-975-5107

Presentation made available on STRbase

