HW1 – NGS Workflows for Forensic Genetics Type: Half Day Workshop, Lecture Date & Time: Monday, 9 September (9:00-13:00)

Peter M. Vallone, Ph.D. Leader, Applied Genetics Group NIST September 9, 2019 Prague, Czech Republic

- 9:00 10:30 AM: Introduction & Workflow 1
- 10:30 11:00 AM: Coffee Break!
- 11:00 AM 1:00 PM: Workflows 2 & 3

Slides and supporting information can be found at: Google drive link <u>https://drive.google.com/drive/folders/1cbqsnBaEgivRkYIxNr2r2LtBFibvafvk</u> Or use <u>https://tinyurl.com/yyfwe8jc</u>

This information was sent out by email prior to the workshop

What marker systems are you interested in sequencing? (you can select more than one)

- There is an interest in sequencing as a forensic workflow
 - PCR-Sequencing
- Differs from traditional PCR-CE workflow
 - How?
 - What is the same?
 - What is different?

Why sequence?

- More markers higher multiplexing capability (versus CE-based methods)
- More information more markers and sequence level resolution
- End goal: Access to this additional information will support forensic casework applications

Why sequence STRS? Sequencing of STRs STR motif sequence variation; flanking region variation (more polymorphic) Further understand simple versus complex repeat motifs Characterize stutter Applications One to one matching? – RMPs with 20 STR markers are already quite low (>10⁻²⁰) Partial profiles Kinship Length-based allele calls are back compatible with existing databases Mixtures Resolve alleles identical by length, but differ by sequence Separate stutter from low level contributors (based on sequence) A sequenced allele *may* have a lower frequency (resulting in a higher LR)

Sequencing other marker systems: applications

- Mitochondrial DNA sequencing
 - Control region and/or full genome

Higher throughput than Sanger methods Measure lower levels of heteroplasmy Easier workflow ?

- SNPs
 - Ancestry, Identity, Phenotype, Microhaplotypes (closely linked SNPs)
- In the future?
 - Non-targeted sequencing, RNA targets, metagenomics, epigenetics
 - New technologies, methods, marker systems

•	0003: DEVELOPMENT AND OPTIMIZATION OF THE VISAGE PROTOTYPE TOOLS FOR BIO-GEOGRAPHIC ANCESTRY AND APPEARANCE TRAITS INFERENCE USING TARGETED MPS 0007: COMPARISON OF CE- AND MPS-BASED ANALYSES OF FORENSIC MARKERS WITH SINGLE CELL AFTER WHOLE GENOME AMPLIFICATION 0008: PRESENTATION OF THE HUMAN PIGMENTATION (HUPI) AMPLISEQ CUSTOM PANEL	This week Phenotype-Ancestry Single cell Methylation – Age prediction Mixtures Casework Microbiome PNA
•	0009: PREDICTIVE DNA ANALYSIS OF HUMAN HEAD HAIR GREYING USING WHOLE-EXOME AND TARGETED NGS DATA EXAMINED WITH DEEP LEARNING METHODS	NINA
•	0010: A COMPARISON OF DNA METHYLATION TECHNOLOGIES AND PERFORMANCE OF AGE PREDICTION M	ODELS
•	0015: COMPARISON OF CE AND MPS BASED ANALYSIS FOR THE PROBABILISTIC INTERPRETATION OF MIXED	STR PROFILES
•	0017: THE FIRST MPS-STR BASED CONVICTION IN A CRIMINAL CASE?	
•	0018: ENHANCING STR SEQUENCE ALLELE REPRESENTATION FOR PROBABILISTIC GENOTYPING	
•	0019: A MASSIVELY PARALLEL SEQUENCING ASSAY OF MICROHAPLOTYPES FOR MIXTURE DECONVOLUTION	
•	0059: TAXONOMY-INDEPENDENT DEEP LEARNING MICROBIOME APPROACH FOR ACCURATE CLASSIFICATIO FORENSICALLY RELEVANT HUMAN BIOMATERIALS USING TARGETED MPS	N OF
•	0060: PERFORMANCE OF ENVIRONMENTAL DNA METABARCODING IN SOIL TRACE MATCHING AND PROVEN	IANCING
•	0063: SPECIES IDENTIFICATION USING MASSIVELY PARALLEL SEQUENCING – DETECTING MULTIPLE SPECIES SOURCES	IN MIXED
•	0065: WHOLE-GENOME SEQUENCING OF NEISSERIA GONORRHOEAE IN A FORENSIC TRANSMISSION CASE	
•	0066: WHOLE TRANSCRIPTOME ANALYSIS OF AGED BIOLOGICAL CRIME SCENE TRACES	

Additional I	related workshops	
HW8 - Autosomal STR Genom	ics 101: Sequence Variation and Nomenclature	1
Organiser: Katherine Gettings Date & Time: Tuesday, 10 Sept Capacity: 60pax Workshop type: Lecture	ember (14:00-18:00)	
HW9 - Forensic DNA Phenoty	ing: basics of data acquisition and interpretation	
Organiser: Wojciech Branicki Date & Time: Tuesday, 10 Sept Capacity: 100pax	ember (14:00-18:00)	
Workshop type: Lecture	FW3 - Population analysis of forensic DNA da	ita using Snipper and STRUCTURE
	Organiser: Christopher Phillips & Leonor Gusn Date & Time: Monday, 9 September (14:00-18: Capacity: 40pax	nao :00) & Tuesday, 10 September (9:00-13:00

Select listing of commercial sequencing workflows

Assay	Platform	Associated Software	Markers
ForenSeq DNA Signature Prep Kit	MiSeq FGx	UAS	auSTRs, Y STRs, X STRs and SNPs
ForenSeq mtDNA Control Region Solution	MiSeq FGx	UAS	Mitochondrial control region (WG soon?)
PowerSeq 46GY System	MiSeq	Open	auSTR and Y STRs
PowerSeq CRM Nested System, Custom	MiSeq	Open	Mitochondrial control region (and WG)
Precision ID SNP Identity Panel	S5	Converge	Identity SNPs
Precision ID SNP Ancestry Panel	S5	Converge	Ancestry SNPs
Precision ID STR GlobalFiler NGS STR Panel v2	S5	Converge	Autosomal STRs
Precision ID mtDNA Whole Genome Panel	S5	Converge	Whole mitochondrial genome
Precision ID mtDNA Control Region Panel	S5	Converge	Mitochondrial control region
Precision ID SNP Phenotype Panel	S5	Converge	SNPs
GeneReader DNAseq Targeted Panels V2	Illumina/S5	CLCBio - open	Mito, SNPs

UAS = Universal Analysis Software

List not exhaustive – just some common examples

Disclaimer

- I am not covering all possible workflows that might apply to forensic genetics
- I hope that the ones we discuss to today are useful to illustrate the methods and techniques you will encounter
- Not my intention to suggest that one method or platform is best
- It is up to you to decide want you need (cost, time, steps, automation, information, ease of use, throughput, data, marker systems, etc.)
- More information can be found in the manuals and specific literature

NGS workflow #1

Table 1: ForenSe	q DNA Signa	ture Prep Kit	-Forensic	Loci
Feature	Number of Markers ^a	Amplicon Size Range (bp)	Included in DNA Primer Mix A	Included in DNA Primer Mix B ^b
Global Autosomal STRs	27	61–467	Yes	Yes
Y-STRs	24	119-390	Yes	Yes
X-STRs	7	157-462	Yes	Yes
Identity SNPs	94	63–231	Yes	Yes
Phenotypic SNPs	22	73–227	No	Yes
Biogeographical Ancestry SNPs	56	67–200	No	Yes

		ę	96 unio tl	que co he eigł	mbina nt i5 ar	tion ca nd twe	n be c lve i7 i	reated ndices	from			
	R701	R702	R703	R704	R705	R706	R707	R708	R709	R710	R711	R712
A501	A501 R701	A501 R702	A501 R703	A501 R704	A501 R705	A501 R706	A501 R707	A501 R708	A501 R709	A501 R710	A501 R711	A501 R712
A502	A502 R701	A502 R702	A502 R703	A502 R704	A502 R705	A502 R706	A502 R707	A502 R708	A502 R709	A502 R710	A502 R711	A502 R712
A503	A503 R701	A503 R702	A503 R703	A503 R704	A503 R705	A503 R706	A503 R707	A503 R708	A503 R709	A503 R710	A503 R711	A503 R712
A504	A504 R701	A504 R702	A504 R703	A504 R704	A504 R705	A504 R706	A504 R707	A504 R708	A504 R709	A504 R710	A504 R711	A504 R712
A505	A505 R701	A505 R702	A505 R703	A505 R704	A505 R705	A505 R706	A505 R707	A505 R708	A505 R709	A505 R710	A505 R711	A505 R712
A506	A506 R701	A506 R702	A506 R703	A506 R704	A506 R705	A506 R706	A506 R707	A506 R708	A506 R709	A506 R710	A506 R711	A506 R712
A507	A507 R701	A507 R702	A507 R703	A507 R704	A507 R705	A507 R706	A507 R707	A507 R708	A507 R709	A507 R710	A507 R711	A507 R712
A508	A508 R701	A508 R702	A508 R703	A508 R704	A508 R705	A508 R706	A508 R707	A508 R708	A508 R709	A508 R710	A508 R711	A508 R712

	Combinations of i5 ((8 nt) and i7 (6 nt) will a	allow for sample barcoding	
	Forward PCR prin	ner	Reverse PCR primer	
P5 i5 i	ndex Seq1 fPrimer	Target Region	rPrimer Seq2 i7 index	P7
P5 sequence that will bind to the flow cell	Tag that allows for P5 and i5 to be incorporated by PCR and is the sequencing primer binding site	STR/SNP	Tag that allows P7 for i7 and P7 to that be incorporated the by PCR and is the sequencing primer binding site	sequence will bind to e flow cell

Workflow: ForenSeq™ DNA Signature Prep kit	
Step: Purify libraries	Prepare bead suspension
Purpose: Purify amplified libraries	Pipette 45 μL of bead suspension into plate Pipette 45 μL of PCR into bead
Result: purified adapted PCR products	Shake 1800 rpm for 2 min Let sit for 5 min Place on magnetic stand for 2 min (until clear) Wash with 200 μL 80% EtOH – 2 times Add 52.2 μL of resuspension buffer to each well Shake 1800 rpm for 2 min Place on magnetic stand for 2 min (until clear) Recover 50 μL in a fresh plate
P5 i5 index Seq1 fPrimer Target PCR Adapted PCR libraries bind to the beads PCR bind to the beads	Region rPrimer Seq2 i7 index P7 Excess PCR reagents are washed off Purified adapted libraries are recovered Prime P7

Workflow: ForenSeq[™] DNA Signature Prep kit

Step: Sequencing

Purpose: Sequence the PCR products

Note: we will not be covering how to set up a specific instrument, loading the system, operational software, etc. This is covered in training materials, software 'wizards'

(Fluorescent) Sequencing by synthesis

- · The library you created is hybridized to a flow cell
- Individual strands create 'clusters' through bridge amplification
- Sequencing proceeds one base per cycle
- Each A, G, C, T has a unique fluorescent dye attached
- Four images of the flow cell per cycle allows for the assignment of sequence at each cluster

Illumina Sequencing Movie

<u>https://www.youtube.com/watch?v=womKfikWlxM</u>

cing/sequencing_software/sequencing_analysis_viewer_sav.h ide NIST Homep 😵 RAP Modules 🔋 Forensic Science Int	tml	ery Expre 😽 CLSI Forums Clinic 🔇 www.bipm.org/ubis	s
illumina' Q Search		ISISN IN WHEW CART - CONTACT US @SELECT LO	00
Products Learn Company	Support Recommended Links ①		
SUPPORT RESOURCES Overview Documentation	FAQs Software Downloads Compatible Products Computer	ig Requirements Training SUPPC	
	A CONTRACTOR OF		
Support Resources			
Support Resources	Software Downloads	Product Information	
Support Resources	Software Downloads Sequencing Analysis Vower v2.4.7 Sequencing Analysis Vower v2.1.8	Product Information	

Summary of ancestry and phenotype marker estimates For NIST SRM 2391d

Component	For	enSeq		P	recision	ID		Mito	Y SNP
	Ancestry	Hair	Eye	Ancestry	Hair	Hair	Eye		
А	European	0.68	0.66	European	0.66	1.00 light	0.67	T2b3	-
В	African	0.69	0.86	African	0.66	0.93 light	0.85	L1c1a	Е
С	African	0.84	1.00	African	0.68	1.00 dark	1.00	L1b1a	E
E	European	0.61	0.71	European/SW Asian	0.69	0.72 light	0.72	T2a3	-

Predictions made using vendor tools

Mito Sequencing

Degenerate PCR primers Primer A Individual #1 CTACGATCGACTAGCATCGAC CTACGATCGACTAGCTGATGCAGTCGATGCTGATGCCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATCGCCTAGCCCTAGCCCTAGCAGTCGATGCTGATGCTGATGCTGATGCTGATGCGCCTAGCCGATCGTAGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCTGATGCGCCTAGCCGGATCGTAGCTGATGCTGA

Two PCR set up

Figure 4: ForenSeq Sample Plate Setup for 48 samples

0													
	1	2	3	4	5	6	7	8	9	10	11	12	
			Set	1 Prim	er Mix			Se	et 2 Pri	mer Mi	х		
	R713	R714	R716	R717	R718	R719	R713	R714	R716	R717	R718	R719	Two separate PCRs
A501	Sample 1	Sample 9	Sample 17	Sample 25	Sample 33	Sample 41	Sample 1	Sample 9	Sample 17	Sample 25	Sample 33	Sample 41	
A502	Sample 2	Sample 10	Sample 18	Sample 26	Sample 34	Sample 42	Sample 2	Sample 10	Sample 18	Sample 26	Sample 34	Sample 42	An individual sample will have the
A503	Sample 3	Sample 11	Sample 19	Sample 27	Sample 35	Sample 43	Sample 3	Sample 11	Sample 19	Sample 27	Sample 35	Sample 43	same i5/i7 index for both PCRs
A504	Sample 4	Sample 12	Sample 20	Sample 28	Sample 36	Sample 44	Sample 4	Sample 12	Sample 20	Sample 28	Sample 36	Sample 44	
A505	Sample 5	Sample 13	Sample 21	Sample 29	Sample 37	Sample 45	Sample 5	Sample 13	Sample 21	Sample 29	Sample 37	Sample 45	
A506	Sample 6	Sample 14	Sample 22	Sample 30	Sample 38	Sample 46	Sample 6	Sample 14	Sample 22	Sample 30	Sample 38	Sample 46	
A507	Sample 7	Sample 15	Sample 23	Sample 31	Sample 39	Sample 47	Sample 7	Sample 15	Sample 23	Sample 31	Sample 39	Sample 47	
A508	Sample 8	Sample 16	Sample 24	Sample 32	Sample 40	Sample 48	Sample 8	Sample 16	Sample 24	Sample 32	Sample 40	Sample 48	

Summary

- Uses PCR tagging to incorporate library adapters
- Bead-based normalization is used to ensure that each library is of a similar concertation prior to sequencing
- Care should be taken with PCR 2 and i5/i7 indices to avoid contamination
- Sequencing by synthesis all four bases are incorporated and read per cycle

PowerSeq [™] 46GY System	Locus Name D8S1179 D21S11 D7S820 CSF1PO D3S1358 TH01 D13S317	Locus Name DYS391 DYS19 DYS385ab DYS3891/II DYS390 DYS392 DYS393
Extract and Targeted Library Quantify Amplification Preparation Cluster Generation Sequence Data Analysis DNA (Autosomal STR, Y STR)	D16S539 D2S1338 D19S433	DYS437 DYS438 DYS439
	vWA TPOX D18S51 D5S818 FGA	DYS448 DYS456 DYS458 DYS481 DYS533
Traditional extraction and quantification PowerSeq" Amplification Systems TrusSeq" DNA CD Indexes TrusSeq" Real DDR-free HT Library Prep Kit PowerSeq" Quant MS System Illiumina MISeq Reagent kit (MISeq" Reagent Kit v3)	Penta D Penta E Amelogenin D1S1656 D2S441 D10S1248	DYS549 DYS570 DYS576 DYS635 DYS643 Y-GATA-H4
PCR products for each locus are designe	D12S391 D22S1045 DYS391 d to be in a ran	nge of 140–300bp

Workflow: Promega PowerSeq 46GY Step: Quantify PCR products

Purpose: Estimate PCR product concentration for library preparation

From the manual: Determine the concentration of the purified amplification products by measuring the absorbance using a fluorescence-based quantification method. We recommend the Quantifluor® dsDNA System (Promega Cat.# E2670) or the QuantiFluor® One dsDNA System (Promega Cat.# E4871 or E4870) with the Quantus™ Fluorometer or the GloMax® Multi Detection System].

A fluorometer can be used to obtain a concertation estimate of purified PCR products

Single measurements or plate format

An aliquot of the PCR products is mixed with a dsDNA binding dye and the fluorescence is measured

Based on the measurement, the PCR products for each sample are diluted to:

Protocol target: 500 ng in a volume of 60 μ L

https://www.illumina.com/documents/products/datasheets/datasheet truseq dna pcr free sample prep.pdf

DNA Ligation

DNA ligase catalyzes the joining of the 3'-OH to the 5'-phosphate via a two step mechanism

First, the AMP nucleotide, which is attached to a lysine residue in the enzyme's active site, is transferred to the 5'-phosphate

Then the AMP-phosphate bond is attacked by the 3'-OH, forming the covalent bond and releasing AMP

To allow the enzyme to carry out further reactions the AMP in the enzyme's active site must be replenished by ATP.

Workflow: Promega PowerSeq 46GY

Step: Quantification of the library products

Purpose: Determine the concentration of each library (prior to normalization)

Quantification (qPCR-based)

PowerSeq[™] Quant MS System • Ouantification of MiSeg[®] Platform Compati

- Quantification of MiSeq[®] Platform Compatible MPS Libraries enables normalization of MPS libraries based on DNA quantification
- Uses BRYT Green[®] dye-based qPCR system for maximum sensitivity and reproducibility
- Enables accurate and balanced multiplexed Illumina pooled libraries

Already covered Illumina sequencing...

Data analysis using open source software/tools

	Name	Availability
	Freeware	
'SNPs	FDSTools	Python Package Index
	Seqmapper	http://forensic.mc.ntu.edu.tw:9000/SEQMapperWeb/Default.aspx
	STRait Razor v2s STRait Razor 3.0	https://www.unthsc.edu/graduate-school-of-biomedical- sciences/laboratory-faculty-and-staff/strait-razor/
Ϋ́	STRinNGS	Upon request from the University of Copenhagen
n D	toaSTR	https://www.toastr.de
an	For purchase	
at rocus	ExactID	https://www.battelle.org/government-offerings/homeland- security-public-safety/security-law-enforcement/forensic- genomics/exactid
ŝ	GeneMarkerHTS	https://softgenetics.com/GeneMarkerHTS.php
SID	Armed Expert Mixture Ace	https://nichevision.com/mixtureace/
0	Assay specific, for purchase	
	<u>Converge</u>	https://www.thermofisher.com/order/catalog/product/A35131
	Universal Analysis Software	https://verogen.com/products/

Name	References
Freeware	
FDSTools	J. Hoogenboom, K.J. van der Gaag, R.H. de Leeuw, T. Sijen, P. de Knijff, J.F. Laros, FDSTools: A software package for analysis of massively parallel sequencing data with the ability to recognise and correct STR stutter and other PCR or sequencing noise, Forensic Sci Int Genet 27 (2017) 27-40.
Seqmapper	J.C. Lee, B. Tseng, L.K. Chang, A. Linacre, SEQ Mapper: A DNA sequence searching tool for massively parallel sequencing data, Forensic Sci Int Genet 26 (2017) 66-69.
STRait Razor v2s STRait Razor 3.0	J.L. King, F.R. Wendt, J. Sun, B. Budowle, STRait Razor v2s: Advancing sequence-based STR allele reporting and beyond to other marker systems, Forensic Sci Int Genet 29 (2017) 21-28. A.E. Woerner, J.L. King, B. Budowle, Fast STR allele identification with STRait Razor 3.0, Forensic Science International: Genetics (2017).
STRinNGS	S.L. Friis, A. Buchard, E. Rockenbauer, C. Borsting, N. Morling, Introduction of the Python script STRinNGS for analysis of STR regions in FASTQ or BAM files and expansion of the Danish STR sequence database to 11 STRs, Forensic Sci Int Genet 21 (2016) 68-75.
toaSTR	S. Ganschow, J. Silvery, J. Kalinowski, C. Tiemann, toaSTR: A web application for forensic STR genotyping by massively parallel sequencing, Forensic Sci Int Genet 37 (2018) 21-28.

Table courtesy of Katherine Gettings (NIST)

STRait Razor 3.0	Hversik Science International: Cenetics 30 (2017) III-23 Contents lists available at ScienceDirect Forensic Science International: Cenetics ELSEVIER journal homepage: www.elsevier.com/locate/fsig
	Short communication Fast STR allele identification with STRait Razor 3.0 August E. Woerner ^{1, *} , Jonathan L. King ² , Bruce Budowle ^{4,b} *Cours for human Mentification, University of Neth Yome Health Science Course, 2000 Comp Nove Hed, For Works, 12 76807, USA *Course of Decellence in Courses: Medicine (CICMR); Ming Medidatic University, Jondah, Small Avalue
 <u>https://github.com/Ahhgust/9</u> Code to run STRait Razor 3.0 	<u>STRaitRazor</u>
 Links an excel file to parse the 	e results
 <u>https://www.dropbox.com/s/</u> <u>Analysis%20v3.xlsm?dl=1</u> 	't3n0d2h6od0qek2/STRait%20Razor%20

STRait Razor file example-TPOX

	TPOX:7	28 bases	AATGAATGAATGAATGAATGAATG	9
	TPOX:7	28 bases	AATGAATGAATGAATGAATGAATG	1
. Length of sequence	TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATG	332
. Sequence	TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAAAG	2
. Coverage	TPOX:8	32 bases	AATGAATGAATGAATGAATGAAGGAATGAATG	1
	TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATG	1
	TPOX:8	32 bases	AACGAATGAATGAATGAATGAATGAATG	1
	TPOX:8	32 bases	AATGAATGAATGAATGAGTGAATGACTGATTG	1
	TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATGGATG	1
	TPOX:8	32 bases	AATGAATGATTGAATGAATGAATGAATG	1
	TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATGTATT	1
	TPOX:8	32 bases	AATGAATGAATGGATGAATGAATGAATG	1
	TPOX:8	32 bases	AATGAATGAACGAATGACTGAATGAATGAATG	1
	TPOX:9	36 bases	AATGAATGAATGAATGAATGAATGAATGAATG	17
	TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATGAAT	321
	TPOX:10	40 bases	ACTGAATGAATGAATGAATGAATGAATGAATGAATGAATG	1
	TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAAAGAATGAAT	1
	TPOX:10	40 bases	AATGAATGAATGAGTGAATGAATGAATGAATGAATGAAT	1
	TPOX:10	40 bases	AATGAATGAATAAATGAATGAATGAATGAATGAATGAAT	1
	TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATGATGA	1
	TPOX:10	40 bases	AATGAATGAATGCATGAATGAATGAATGAATGAATGAATG	1
	TPOX:11	44 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATGAAT	2

ST	Rait Raz	or f	ile e	example-TPOX (8,10)		
		Locus	Length	Sequence	Coverage	Comment
1.	Locus : allele call	TPOX:7	28 bases	AATGAATGAATGAATGAATGAATG	9	n-4 stutter
2.	Length of sequence	TPOX:7	28 bases	AATGAATGAATGA <mark>G</mark> TGAATGAATGAATG	1	
3	Sequence	TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATG	332	Allele
۵. ۵	Coverage	TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAAATGAAAAG	2	
ч.	coverage	TPOX:8	32 bases	AATGAATGAATGAATGAATGAA G GAATGAATG	1	
		TPOX:8	32 bases	AATGAATGAATGAATGA <mark>C</mark> TGAATGAATGAATG	1	
		TPOX:8	32 bases	AA <mark>C</mark> GAATGAATGAATGAATGAATGAATG	1	
		TPOX:8	32 bases	AATGAATGAATGAATGAGTGAATGACTGA <mark>T</mark> TG	1	
		TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATG	1	
		TPOX:8	32 bases	AATGAATGATGAATGAATGAATGAATG	1	
		TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATG T AT <mark>T</mark>	1	
		TPOX:8	32 bases	AATGAATGAATG <mark>G</mark> ATGAATGAATGAATG	1	
		TPOX:8	32 bases	AATGAATGAA <mark>C</mark> GAATGA <mark>C</mark> TGAATGAATGAATG	1	
		TPOX:9	36 bases	AATGAATGAATGAATGAATGAATGAATGAATG	17	n-4 stutter; n+4 sutter
		TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATG	321	Allele
		TPOX:10	40 bases	A <u>C</u> TGAATGAATGAATGAATGAATGAATGAATGAATG	1	
		TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAAATGAATG	1	
		TPOX:10	40 bases	AATGAATGAATGA <mark>G</mark> TGAATGAATGAATGAATGAATGAATG	1	
		TPOX:10	40 bases	AATGAATGAATAATGAATGAATGAATGAATGAATGAATG	1	
		TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATGA	1	
		TPOX:10	40 bases	AATGAATGAATG <mark>C</mark> ATGAATGAATGAATGAATGAATGAATG	1	
		TPOX:11	44 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATGAAT	2	n+4 stutter?

Google Drive

<u>https://drive.google.com/drive/folders/1cbqsnBaEgivRkYIxNr2r2LtBFibvafvk</u>

Or

• <u>https://tinyurl.com/yyfwe8jc</u>

My Drive > ISFG_Sequencing_2019_Workshop_Vallone > FASTQ Files -
Name 1
ForenSeq.fastq 🚢
NGSGlobalFiler.fastq 🏝
PowerSeq46GY.fastq 🚢

toaSTR [https://www.toastr.de/]

Forensic Science International: Genetics Volume 37, November 2018, Pages 21-28

toaSTR: A web application for forensic STR genotyping by massively parallel sequencing Sebastian Ganschow^a 옷쪽, Janine Silvery^a, Jörn Kalinowski^b, Carsten Tiemann^a B Show more https://doi.org/10.1016/j.fsigen.2018.07.006 Get rights and content

Analyze PowerSeq Data

- STRait Razor 3.0
 - Run code
 - Excel file view
- toaSTR
 - Upload
 - View results
 - Export

• Indexing Primers	
1 × 75µl PowerSeq™ Nested System Index Primer 1 D701	
1 × 75µl PowerSeq™ Nested System Index Primer 1 D702	
$1 \times 75 \mu$ l PowerSeq [™] Nested System Index Primer 1 D703	
1 × 75µl PowerSeq™ Nested System Index Primer 1 D704	
1 × 75µl PowerSeq™ Nested System Index Primer 1 D705	Adapter/Index primers are included in the kit
1 × 75µl PowerSeq™ Nested System Index Primer 1 D706	
1 × 75µl PowerSeq™ Nested System Index Primer 1 D707	
1 × 75µl PowerSeq™ Nested System Index Primer 1 D708	
1 × 75µl PowerSeq™ Nested System Index Primer 1 D709	
1 × 75µl PowerSeq™ Nested System Index Primer 1 D710	
1 × 75µl PowerSeq™ Nested System Index Primer 1 D711	
1 × 75µl PowerSeq™ Nested System Index Primer 1 D712	
$1 \times 75 \mu$ l PowerSeq [™] Nested System Index Primer 2 D501	
1 × 75µl PowerSeq™ Nested System Index Primer 2 D502	
1 × 75µl PowerSeq™ Nested System Index Primer 2 D503	
1 × 75µl PowerSeq™ Nested System Index Primer 2 D504	
1 × 75µl PowerSeq™ Nested System Index Primer 2 D505	
1 × 75µl PowerSeq™ Nested System Index Primer 2 D506	
1 × 75µl PowerSeq™ Nested System Index Primer 2 D507	
1 × 75µl PowerSeq [™] Nested System Index Primer 2 D508	From the Promega manual

View Mito sequence data in IGV

- <u>https://igv.org/app/</u>
- Or download desktop version
- <u>http://software.broadinstitute.org/software/igv/</u>

Summary

- Uses ligation to incorporate library adapters
 - End repair and A-tailing
- Quantification steps for PCR products and libraries
 - Fluorescence readout
 - qPCR
- Both 'top' and 'bottom' strands are sequenced

ep: Dilute and Pool					
irpose: Prepare equi	nolar pool for em	ulsion PCR			
Panel	Dilute to	Minimum volume	Panel	Dilute to	Minimum volume
Precision ID GlobalFiler [™] NGS STF Panel v2	50 pM	25 µL	Precision ID Ancestry Panel or Precision ID Identity Panel	30 pM	25 μL
	X index	Targ	get Region	P1	
If	X index you do not have e	Targ	get Region	P1 ne existing libra	згу

Workflow: Precision ID Step: Load the S5 chip Purpose: Efficiently load the ISPs onto the chip **Chip Loading** The Ion Chef will load the ISPs onto the chip (reduce air bubbles, even/efficient loading) You physically load the chips onto the S5 instrument ion torrent ᠔★△○×□+ ion torrent ᠔★△○×□+ ion torrent ᠔★▲○×□+ D88801553 DBBC00146 DABDOOODS 520 540 530 3-6 M reads per chip 15-20 M reads per chip 60-80 M reads per chip Up to 600 bp Up to 600 bp Up to 200 bp

58

S5 Diagnostics (530 chip Identity SNP panel)

1.93 G	0.6X		99.0	1%		1.	79 G		
Total Aligned Bases	Reference Cove	rage	Mean Raw A	ccuracy 1x		AQ171	fotal Bases		
19,384,121	99%					Alignme	ent Qualit	у	
	Aligned Bases		100 -	-			AQ17	AQ20	Perfect
v	⊥% Unaligned		PLANATIN'Y)r		Total Number of Bases [bp]	1.79 G	1.51 G	1.24 G
Read			98 -	-		Mean Length [bp]	97	86	71
			Č oc			Longest Alignment [bp]	337	337	320
0 50 100 15 Positie	0 200 250 300 on in Read	 350 &	94 - 92 -	-		Mean Coverage Depth [x]	0.6	0.5	0.4
	Count	%							
tal Reads	19,384,121	-	90 50 100 15	0 200 250 300 350					
gned Reads	19,310,626	99.6%	Po	sition	ચ				
naligned Reads	73,495	0.4%							

Data analysis in Converge

- Working with a cloud instance of Converge set up by Thermo Fisher (Thank you!)
- Sequence data files from NIST SRM 2391d (STR, SNP, Mito)
- Intended to give a brief overview of the sequence data

ex Prediction - Set of 151 ASNPs	Map Results	Genotypes	
Results Canotypes	Population	Geo region	Likelihood
	African America	ns Africa	1.395e-44
	Chagga	Africa	4.553e-48
	Masai	Africa	1.360e-50
	Hausa	Africa	1.302e-50
Dest Stan S Lus	Lisongo	Africa	2.427e-52
	Sandawe	Africa	8.246e-53
	Zaramo	Africa	8.159e-54
	Jews, Ethiopian	Africa	5.201e-55
	Ibo	Africa	6.075e-56
	Yoruba	Africa	2.118e-56
	Yoruba-HapMa	o Africa	3.172e-58
	Somali	Africa	2.203e-60
	Biaka	Africa	1.561e-62
	Mbuti	Africa	1.067e-62
	Negroid Makra	i Asia	2.701e-63
SBM 2391d	- B		

Summary

- Emulsion PCR is performed to generate clonal library populations on the ISP
 - Not performed on the sequencer
- Sequencing is carried out by flowing successive NTPs onto the chip
- Quantification steps for library normalization
 - qPCR

