

When a DNA profile obtained from a crime scene and there is a reference DNA profile to compare we need some way to assess the significance of the similar or different allelic information A statistical weighting The way that this statistical weighting is generated has a lot of population genetics and statistics behind it

forensic science sa

Section 1 Section 1
To apply a statistical weighting we must know the 'rarity' of the DNA profile we are examining.
This is governed by the 'rarity' of the components (alleles) that make up the reference DNA profile in the population of interest:
p ² +2pq+q ² =1
Works for 'ideal' population i.e. one that is in Hardy Weinberg equilibrium
Genotype frequencies are constant between generations and all frequencies sum to 1
forensic science sa

Recommend of loads Automatic
So for example - we wanted to calculate a <u>profile frequency</u> for a homozygous locus [A,A] where the frequency of [A] is 0.3:
Profile frequency = $p^2 = (0.3)^2 = 0.09$
Or Heterozygous locus [A,B] where the frequency of [A] is 0.3 and [B] is 0.7:
Profile frequency = 2pq = 2(0.3)(0.7) = 0.42
Why is 2 out the front here for heterozygotes? forensic science sa

-		R S	Sources of last Astrony Investigation ()				
In our population where $p = 0.3$ and $q = 0.7$ we would expect genotypes in the following proportions:							
		Α	В				
	А	AA (0.3 ²)=0.09	AB (0.3x0.7)=0.21				
	В	AB (0.7x0.3)=0.21	BB (0.7 ²)=0.49				
A her actua And p	terozygote ally be [A, p ² +2pq+q ² TENSIC SC	e individual who con B] or [B,A] = pq + q =(0.3) ² +2(0.3)(0.7)+	itains an [A] and a [B] could p = 2pq (0.7) ² = 0.09+0.42+0.49 = 1				

his opu	idea can be Jlation with	extended t	o multi-alle s A=0.2, B=C	ele scenario:).3, C=0.2, [€ e.g. cons 0=0.2, E=0.0	ider a 05, F=0.05
	A	в	с	D	E	F
A	0.2 ² =0.04	0.2x0.3=0.06	0.2x0.2=0.04	0.2x0.2=0.04	0.2x0.05=0.01	0.2x0.05=0.01
в	0.2x0.3=0.06	0.32=0.09	0.3x0.2=0.06	0.3x0.2=0.06	0.3x0.05=0.15	0.3x0.05=0.15
с	0.2x0.2=0.04	0.3x0.2=0.06	0.22=.0.4	0.2x0.2=0.04	0.2x0.05=0.01	0.2x0.05=0.01
D	0.2x0.2=0.04	0.3x0.2=0.06	0.2x0.2=0.04	0.22 = 0.04	0.2x0.05=0.01	0.052=0.0025
E	0.2x0.05=0.01	0.3x0.05=0.15	0.2x0.05=0.01	0.2x0.05=0.01	0.052=0.0025	0.052=0.0025
F	0.2x0.05=0.01	0.3x0.05=0.15	0.2x0.05=0.01	0.2x0.05=0.01	0.052=0.0025	0.052=0.0025
f	orensic s	cience s	a			

CON Records of Section Automatic

100	30	1994	Him	10	115	111	101	0.0	- B4	
+	-	-	-	-	-	-	1400	1919	4.00.00	
		-		1.000	-	-	-	13400	0.044	
γ	-	-	-	1000	-	1.017	1.044	NAME.	1229	
÷	-	-		+ 1444	-	+ 0811	1.3614	ante:	1000	
ii -	-	-	-	1000		0.0001	1-(10)	1011	+ 214	
Ш	-	-	-	11144		1.001	4,04.0	6340	4107	
ii -	-	-	-	82(2)	-	4.9911	0.2100	1.0014	1428	
)i	10000	8.0121	1.00	1.219		8.3877	8.8121	0.0234	21	
11	4411	0.001		0.000		0.110	4.000	1.0		
H	1.094	0.344	-	1.000	-	6.5344	-	-	-	
11	+ (4)1	1,3133	1004	100			-			
н		0.000	1000	-		1.0101	-	-	-	
10	1.0041	0.181	1.1784	-		0.0811	-			
*	10111		10044	-		4 cents	121	-	23	
mhe	r of	tests	are	then	ner	forme	ed on	the	data	

Caucasian are a lot more boring
Tend to be the same all over the world, with very little geographic substructure
This means that a smaller theta can be used to cover the genetic diversity within Caucasians
θ₁- World
forensic science sa

Validating databases - Fisher's Exact Test This probability is then compared to all permutations of the data and the probabilities of all values lower than the computed one are added together to give the *p*-value. Looking at [A] and [B] simplifies the formulae to: $Pr(n_{AA}, n_{AB}, n_{BB} | n_A, n_B) = \frac{n!n_A n_B 2^{nAB}}{(2n)!n_{AA}!n_{AB}!n_{BB}!}$ If the p-value is less than your cutoff (e.g.5% or 0.05) then your dataset shows some signs of departure from HWE

Validating d	atabases - F	isher's Exact Test
In our datas we would ex	et we have p _y spect:	$p = 0.473$, $p_B = 0.514$ and $p_D = 0.013$ so
Genotype	Expected	Observed
[Y,Y]	8	16
[B,B]	10	17
[B,Y]	18	3
[B,D]	0.5	1
Without car frequencies accurately. But could th	rying out the are not estin his just be by	complete Fisher's test, allele nating genotype frequencies very chance ?

Construct of land Automatic

Crossing over is when genetic material is shared between homologous chromosomes at points of recombination

When two points on a chromosome are separated by a large distance then the chance that recombination will occur between them is high

i.e. If these two distant points were originally in phase (i.e. originally on the same chromosome) then they are equally likely to be end up on the same chromosome as different chromosomes at the end of meiosis phase I

Linkage Linked loci will take longer to reach a level of equilibrium than unlinked loci. The amount of linkage disequilibrium (D) in a population, 'n' generations after an evolutionary event can be determined by: $D_n = (1-R)^n D_0$ D_0 = the level of linkage disequilibrium caused by the evolutionary event.

