

Duncan Taylor
duncan.taylor@sa.gov.au
Hardy Weinberg equilibrium
Allele frequencies
Genotype probabilities
Confidence intervals
Databases
Linkage

When a DNA profile obtained from a crime scene and there is a reference DNA profile to compare we need some way to assess the significance of the similar or different allelic information

A statistical weighting
The way that this statistical weighting is generated has a lot of population genetics and statistics behind it

I will just scratch the surface of some of the key ideas
forensic sciencesa

Hardy Weinberg
 Equilibrium

To apply a statistical weighting we must know the 'rarity' of
the DNA profile we are examining.
This is governed by the 'rarity' of the components (alleles)
that make up the reference DNA profile in the population of
interest:
$\mathrm{p}^{2}+2 \mathrm{pq}+\mathrm{q}^{2}=1$
Works for 'ideal' population i.e. one that is in Hardy Weinberg
equilibrium
Genotype frequencies are constant between generations and
all frequencies sum to 1
forensic SCience sa

In our population where $\mathrm{p}=0.3$ and $\mathrm{q}=0.7$ we would expect genotypes in the following proportions:

	A	B
A	$A A\left(0.3^{2}\right)=0.09$	$A B(0.3 \times 0.7)=0.21$
B	$A B(0.7 \times 0.3)=0.21$	$B B\left(0.7^{2}\right)=0.49$

A heterozygote individual who contains an $[A]$ and a $B]$ could actually be $[\mathrm{A}, \mathrm{B}]$ or $[\mathrm{B}, \mathrm{A}]=\mathrm{pq}+\mathrm{qp}=2 \mathrm{pq}$

And $\mathrm{p}^{2}+2 \mathrm{pq}+\mathrm{q}^{2}=(0.3)^{2}+2(0.3)(0.7)+(0.7)^{2}=0.09+0.42+0.49=1$

forensic science sa

Hardy Weinberg Island

This is the same population after 50 generations

Because the population is in HWE genotype frequencies remain constant and the population remains the same
forensic sciencesa

Hardy Weinberg Island

Generation 30

forensic science sa

forensic science sa

Hardy Weinberg Island

Generation X

What would happen if we still assumed HWE ??

forensic science sa

Hardy Weinberg Island

$O[\mathrm{Y}, \mathrm{Y}]$
$O[B, B]$
forensic science sa

The HW forensic science centre knows that the frequency of $[\mathrm{Y}]$ is 0.5 and $[B]$ is 0.5 and conclude that the frequency of $[\mathrm{Y}, \mathrm{Y}]$ (i.e. a yellow dot person) is:
$\mathrm{p}^{2}=0.5^{2}=0.25$

[^0]

Population databases

[^1]forensic sciencesa

How we generate a population database in practise

 m-lim

Convenience - The sample is not truly random, it is built from a collection of individuals that we have profiled in the course of casework.

In reality the markers that we examine are not selective with respect to crime and so a convenience database can be considered effectively random

Self-declared - the ethnicity of the individuals are on the basis of self declaration

Once again this isn't perfect as there is no checking of the claims of the suspects, however this type of collection has been shown to produce databases that are for use in a forensic setting
forensic sciencesa

How we generate a population database in practise

Once the individuals have been chosen their profiles are compiled and the number of occurrences of each allele counted and divided by the total number of alleles to determine allele frequencies

These allele frequencies are listed in a table in such a way that the data is easily accesable

Using the example:
Taylor DA, Henry JM, Walsh SJ. South Australian Aboriginal sub-population data for the nine AMPFISTR Profiler Plus short tandem repeat (STR) loci. Forensic Sci Int Genet. 2008 Mar;2(2):e27-30.

forensic science sa

Population Databases \quad| There is an obvious |
| :--- |
| problem with this |
| database |

forensic sciencesa

Population Databases

These databases still aren't in HWE, but will give closer estimates of genotype frequency from the allele frequencies.

They may or may not show departures from HWE when tested for departures from equilibrium using the Fisher's Exact test.

The Fisher's Exact test is quite weak in its ability to detect these departures

forensic science sa

Population Databases

We expect human populations to depart from HWE (even if we don't detect any)

Why is this ? Because we violate the assumptions required for HWE, i.e.

- We don't randomly mate
- We immigrate and emigrate
- Mutations occur
- There may be some selective pressures
- Our population size isn't infinite

forensic science sa

Theta

DNA profiles from current forensic profiling kits can have frequencies in the order of 1 in 10^{22}

This means that it each DNA profile is incredibly rare

However given that we have seen a profile already, it makes it more likely to see that profile again

This is because populations are not infinitely large and the choice of mate is not random (violations of the HWE model)

forensic science sa

forensic sciencesa

Theta

Looking at the population that is alive at the present day we would see a picture more like that shown below

Regardless of which individuals breed within a subpopulation there is going to be a distant level of relatedness between them (theta)

forensic sciencesa

forensic science sa

Theta

This effect is balanced out by mutation, which introduces new alleles into the population

The effect on 'normal' sized human populations is that some alleles are more common in certain sub-populations than in others.
forensic sciencesa
Genetic drift causes allele
frequencies to change
over the generations.
Some alleles will drift to
become more common
Others will drift to be lost
in the population
If only genetic drift was
acting then eventually all
loci would become fixed
for an allele
forensic SCIencesa

Lets look at smallest possible populations 4) to show how inbreeding causes populations to develop different allele frequencies

2 men and 2 women who form a very small population

Person1 says - I only want to breed with person2
Person2 - ok
Person3 - Well then I only want to breed with person4 Person4-ok
forensic sciencesa

1. Common theta used in forensic calculations:

Caucasian	$\theta=0.01$	(1%)
Aboriginal	$\theta=0.03$	(3%)

2. Thetas that correspond to familial relationships
First cousins $\quad \theta=0.063 \quad(6.3 \%)$

Second cousins $\quad \theta=0.016$
Notice theta use in forensic setting are high compared to what you would might expect (i.e. the theta of 1% for Caucasians suggests that we might be regularly inbreeding to a level close to second cousins)
forensic sciencesa

- We always try to concede as much doubt to the defendant as is reasonable- i.e. the higher the level of theta, the more potential inbreeding we are accounting for and this will make the profile of interest more likely to be seen again in that population
- Theta's use is two-fold. As well as a co-ancestry coefficient it can also be used as a measure of the genetic distance between populations. So we can use a higher value to take into account the fact that relevant database might be different to our allele freq database
forensic sciencesa

Theta as a measure of distance between populations also explains why theta is higher in Aboriginal groups than for Caucasian groups.

θ_{1} is needed to describe the diversity within subpopulation 1 θ_{2} is needed to describe the diversity within subpopulation 2 θ_{3} is needed to describe the diversity within the entire population

Now we need to look at the population structure of Aboriginal and Caucasian Australians

θ_{1} is needed to describe the diversity within a tribe θ_{2} is needed to describe the diversity within a traditional regional group
θ_{3} is needed to describe the diversity within the entire state

forensic science sa

Caucasian are a lot more boring...
Tend to be the same all over the world, with very little geographic substructure

This means that a smaller theta can be used to cover the genetic diversity within Caucasians

forensic science sa

Matching statistics - Match Probability

We need some way of taking this inbreeding into account, and we do this with the use of θ, a co-ancestry coefficient (also called theta, or F_{ST})
θ was most knowingly incorporated into a matching statistic in a 1994 paper by Balding and Nichols (Forensic Science International 64:125-140, 1994)

Strictly speaking the definition of theta is "The proportion of times that two alleles randomly chosen in a population will be Identical By Descent (IBD)"

forensic sciencesa

Matching statistics - Match Probability

The Match Probability does not make the assumption of HWE and so is a more appropriate matching statistic to use for human populations.

It tells us the probability of seeing a profile a second time given that we have already seen that profile once
i.e. if the suspect is $[A, A]$ (and we are assuming that the suspect is not the offender) then we want to know the probability of seeing $[\mathrm{A}, \mathrm{A}]$ again (in the true offender). This is written as $\operatorname{Pr}(\mathrm{AA} \mid \mathrm{AA})$ when the " \mid " means 'given that we've seen'
forensic science sa

Matching statistics - Match Probability

For homozygote $[\mathrm{A}, \mathrm{A}]$

$$
\operatorname{Pr}(A A \mid A A)=\frac{\left[2 \theta+(1-\theta) p_{A}\right]\left[3 \theta+(1-\theta) p_{A}\right]}{(1+\theta)(1+2 \theta)}
$$

For heterozygote $[\mathrm{A}, \mathrm{B}]$

$$
\operatorname{Pr}(A B \mid A B)=\frac{2\left[\theta+(1-\theta) p_{A}\right]\left[\theta+(1-\theta) p_{B}\right]}{(1+\theta)(1+2 \theta)}
$$

forensic science sa

Matching statistics - Match Probability

comeneriwatant

 5If you assume that there are no dependencies in the data and set $\theta=0$ then the match probability formulae cancel down to the HW product rule formulae:
A^{2}
2AB

However if we choose a value for θ of 0.01 (the approximate value that would correspond to a typical Caucasian population) then our frequency estimates from the earlier example would change:

forensic science sa

Matching statistics - Match Probability

In our dataset we have $p_{Y}=0.473, p_{B}=0.514$ and $p_{D}=0.013$

Assuming HWE
genotype frequency of $[B, Y]=2 p q=2(0.514)(0.473)=0.486$

Using theta
match probability of $\operatorname{Pr}(\mathrm{BY} \mid \mathrm{BY})=$

$$
\frac{2[0.01+(1-0.01) 0.514][0.01+(1-0.01) 0.486]}{(1+0.01)(1+2(0.01))}
$$

forensic SCience sa $=0.495$

Confidence Intervals

[^2]
Population databases -

confidence intervals

Image that the group of individuals we chose for the database were, by chance, different than those we actually chose

The allele frequencies we will differ from the allele frequencies calculated using the last database (which will both be different from the true allele frequencies in the population.

forensic sciences sa

Population databases confidence intervals

Take Allele 'Z' for example. We know that in the population $p_{z}=0.016$

In our first database we did not observe ' Z ' so: $\mathrm{p}_{\mathrm{z}}=0$
n the database seen here:
$\mathrm{p}_{\mathrm{z}}=0.031$

Population databases -
confidence intervals

From the database shown we have the following:
frequency $[\mathrm{B}, \mathrm{Y}]=0.486$

(assuming HWE)
Pr($\mathrm{BY} \mid \mathrm{BY})=0.495$

(taking co-ancestry into account)
(with sampling variation)
Population databases -
confidence intervals
But the true rarity of $[\mathrm{B}, \mathrm{Y}]$ (from a simple count of the green
dots) is 0.074
Which is very different from any of our calculated values.
no amount of
mathematical adjustments
are going to overcome a
poorly constructed
database (like the one
seen here, which spans
multiple populations).

Validating databases

There are tests that we subject our population database to prior to using them.

This is to ensure they are fit for forensic use.

There are many many many forensic papers that describe population databases for countries and groups all over the world, all of which will have had some analyses undertaken on them.
forensic sciencesa

Validating databases

As mentioned earlier, the simplest of these tests is to examine the database for outlying or unusual entries

For example in our database the single 'D' allele might be checked to make sure it is a legitimate allele.

There are other, more biologically focused, tests we perform to assess the data

forensic science sa

Validating databases - Fisher's Exact Test

Used to test for departures from HWE either through dependencies in alleles within a locus (Hardy Weinberg disequilibrium) or between loci (linkage disequilibrium)

Determines the probability of obtaining the genotype
frequencies given the observed allele frequencies
For those of you who like formulae:
$P_{C}=\frac{n!2^{H}}{\prod_{g} n_{g}!} \prod_{l} \frac{\prod_{j} n_{l}!}{(2 n)!}$
$P_{C}=$ the conditional probability of the genotype counts
$n_{g}=$ the genotype counts
$n_{l j}=$ the allelic counts
$n=$ the number of alleles
$H=$ the total number of heterozygotic loci in the sample
forensic science sa

Validating databases - Fisher's Exact Test
 tollone

This probability is then compared to all permutations of the data and the probabilities of all values lower than the computed one are added together to give the p-value. Looking at $[\mathrm{A}]$ and [B] simplifies the formulae to:
$\operatorname{Pr}\left(n_{A A}, n_{A B}, n_{B B} \mid n_{A}, n_{B}\right)=\frac{n!n_{A} n_{B} 2^{\mathrm{n} A B}}{(2 n)!n_{A A}!n_{A B}!n_{B B}!}$

If the p-value is less than your cutoff (e.g. 5% or 0.05) then your dataset shows some signs of departure from HWE
forensic sciencesa

Validating databases - Fisher's Exact Test

Think back to this example of a poorly constructed database

Observed genotypes
$16[\mathrm{Y}, \mathrm{Y}]$
17 [B,B]

- $3[B, Y]$
- $1[B, D]$
forensic sciencesa

Multi-testing problem

Some comparisons may show significant departures from equilibrium

This does not necessarily mean that these dependencies exist
For a database in perfect equilibrium we would expect that the p-values would be evenly spread over the range 0 to 1 (as the exact tests are based on random reshufflings of the data)

forensic sciencesa

Multi-testing problem

For a p-value cut-off of 0.05 we would expect that if no dependencies existed then 5% of comparisons would show a significant departure for equilibrium by chance alone.

The more tests we do the more significant p-values we will get and this is the multi-testing problem.

With 15 Identifiler loci there end up being 120 comparisons being done so we would expect approximately 6 to have p values < 0.05

Needs to be taken into account when assessing HWE/LE departures

forensic sciencesa

Multi-testing problem

Two ways of dealing with multi-testing problem:

- A graphical representation
- A truncated product method

The graphical method is appealing and visually easy to understand. It is based on the idea that for multiple Fisher's exact tests the p-values (for a database with no dependencies) should be evenly spread over the range 0 to 1

This means that if all the p-values were ordered in ascending order then they should fall on a line with the equation $y=x$
forensic sciencesa

Multi-testing problem

Databases that do not contain dependencies will fall within the 95% envelope, databases that do contain dependencies will fall outside

Below are two pan-Australian databases for Aboriginal and Caucasian database

Fipt:2 2p

Multi-testing problem

The second method for assessing departures from HWE and LE is the truncated product method.

This method considered all the p-values together to see whether there is evidence that the results from the multiple tests, as a whole, show evidence for significance

[^3]
Multi-testing problem

The truncated product method states that the sum of $-2 \ln (p-$ values) from ' t ' independent tests should have a chi-squared distribution with $2 t$ degrees of freedom

If you are interested in reading about why this is then read the paper:

Zaykin, D., Zhivotovsky, L. A. and Weir, B. S. (2002)
Truncated product method for combining p-values. Genetics and Epidemiology 22: 170-185.
forensic science sa

Multi-testing problem (¢) =acrevere			
Locus	p-value	$-2 \ln (p)$	This method is most easily carried out in Excel
		HWE	
CSF	0.53	1.26	
D12	0.10	4.68	
D13	0.26	2.72	
D16	0.51	1.37	FGA is showing a significant p -value
D18	0.25	2.74	
;			But overall data has no significant disequilibrium
FGA	0.01	9.09	
TPOX	0.35	2.13	
vWA	1.00	0.00	
Sum[-2ln(p)]		50.66	
p-value		0.12	$\rightarrow=C h i d i s t(50.66,40)$
forensic sciencesa			
			$\operatorname{Sum}[-2 \ln (p)] \quad 2 t$ d.o.f.

Delving further into Fisher

You can delve a little further into dependencies by looking at the observed numbers of genotypes against the expected number at each
[8,11]

forensic science sa expected genotype frequencies

Delving further into Fisher

If in equilibrium these values should adhere to a chi-squared distribution with 1 degree of freedom, so for a 95% confidence interval the 1 d.o.f. chi-squared critical value is 3.84

This means that if we calculate the value:
$\frac{(\text { Observed }- \text { Expected })^{2}}{\text { Exped }}$
Any values > 3.84 are a significant departure

forensic sciencesa

Delving further into Fisher

Doing this can give you some further information that the p-values alone would.

It can tell you that disequilibrium is being caused by a few rare genotypes

Also if significant values are on the diagonal (indicating an excess of homozygotes) then this can indicate the database has substructure

[^4]
A quick word about Linkage

forensic science sa

 Linkage

Gregor Johann Mendel (1822-1884) Austrian Augustinian monk and scientist

Studied inheritance of certain traits in pea plants

The law of segregation - Each individual has two 'factors' controlling a given characteristic, one being a copy of a corresponding factor in the father of the individual and one being a copy of the corresponding factor in the mother of the individual. Further, a copy of randomly selected one of the two factors is copied to each child, independently for different children and independently of the factor contributed by the spouse.
forensic science sa

Thomas Hunt Morgan (1866-1945) American evolutionary biologist, geneticist and embryologist

Found that Mendel's laws did not always hold true.

He found that some characteristics in Drosophila did not randomly assort as expected

Morgan had shown that some genes were linked

forensic science sa

Linkage

Fisher's Exact does not actually detect linked loci purely because they are linked

It detected linkage disequilibrium in a population
A population that is many generations removed from an 'evolutionary event' may have partially linked loci that do not show any signs of linkage disequilibrium.

Linkage disequilibrium is often detected in partially linked loci usually because they take a longer time to re-equilibrate.
forensic science sa

Linkage

ancererlivatant

 $5=-\infty$When a population undergoes an evolutionary event, all loci (linked or not) will be in linkage disequilibrium.

Examples of an evolutionary event include:

- Bottleneck: When a population is reduced to less than half its size.
- Founder Effect: A population that has arisen from a small group of 'founders'

Linkage

- Gene flow: The exchange of genes between populations (this does not require the physical movement of individuals, only their genes)
- Selective sweep: When a gene spread throughout a population due to some positive selection.

Often native populations will have undergone these events and so be in linkage disequilibrium

forensic science sa

Linkage

Linked loci will take longer to reach a level of equilibrium than unlinked loci.

The amount of linkage disequilibrium (D) in a population, ' n ' generations after an evolutionary event can be determined by:
$D_{n}=(1-R)^{n} D_{0}$
$D_{0}=$ the level of linkage disequilibrium caused by the evolutionary event.

forensic science sa

Linkage

The graph below shows the re-equilibration with an initial leve of linkage disequilibrium, $\mathrm{D}=0.1$ with various levels of Recombination (R).

Linkage

Completely linked loci (i.e. those where recombination never occurs) will never be able to recover from the evolutionary event

Completely unlinked loci half the amount of linkage disequilibrium each generation - But will still show some linkage disequilibrium

This is the reason that linkage equilibrium has the addition required assumption (beyond HWE assumptions) that an infinite number of generations has elapsed since any disturbing force.
forensic science sa

[^0]: forensic science sa

[^1]: forensic science sa

[^2]: forensic sciencesa

[^3]: forensic sciencesa

[^4]: forensic sciencesa

