

Presentation Outline

- · Introductions
- · Data collection with ABI Genetic Analyzers
- Data interpretation overview
 SWGDAM 2010 Interpretation Guidelines
- Stutter artifacts from PCR process
- · Peak height ratios for heterozygous genotypes
- · Number of contributors in mixed samples

Importance of Improved Understanding Regarding DNA Mixture Interpretation

- Each DNA analyst may think his or her approach is correct – but misinterpretations have given rise to a variety of approaches being undertaken today, some of which are not correct...
- I believe that a better understanding of general principles will aid consistency and quality of work being performed

President John F. Kennedy Yale University commencement address (June 11, 1962)

"For the greatest enemy of truth is very often not the lie – deliberate, contrived and dishonest – but the myth – persistent, persuasive, and unrealistic. Too often we hold fast to the clichés of our forebears. We subject all facts to a prefabricated set of interpretations. We enjoy the comfort of opinion without the discomfort of thought."

Kit Name	# STR Loci Tested	Manufacturer	Why Used?		
Identifiler, Identifiler Plus*	15 autosomal STRs (aSTRs) & amelogenin	Life Technologies (Applied Biosystems)	Covers the 13 core CODIS loci plus 2 extra		
PowerPlex 16 PowerPlex 16 HS*	15 aSTRs & amelogenin	Promega Corporation	Covers the 13 core CODIS loci plus 2 extra		
Profiler Plus & COfiler (2 different kits)	13 aSTRs [9 + 6 with 2 overlapping] & amelogenin	Life Technologies (Applied Biosystems)	Original kits used to provide 13 CODIS STRs		
Yfiler	17 Y-chromosome STRs	Life Technologies (Applied Biosystems)	Male-specific DNA test		
MiniFiler	8 aSTRs & amelogenin	Life Technologies (Applied Biosystems)	Smaller regions examined; helps with degraded DNA samples		
GlobalFiler*	21 aSTRs, DYS391, Y indel, & amelogenin	Life Technologies (Applied Biosystems)	Addresses future US core loci		
PowerPlex Fusion*	22 aSTRs, DYS391, & amelogenin	Promega Corporation	Addresses future US core loci		

	5	STR	Mark	ker L	ayo	uts fo	r Ne	w U.s	S. Kit	S
2012	100 bp		1 1	200 bp	1 1	300	bp		400 bp	24plex (5-dye)
sion	AM D	3S1358	D1S16	56 D2	S441	D10S1248	D13S31	7	Penta	E
Ŀ	D16S53	9	D18S51		D2S	1338	CSF1	РО	Penta I	0
er P le	TH01		vWA		D21S11	D7S8	20 [D5S818	трох	DYS391
Powe	D8S1	179	D12S391	D1	95433		FG	A		D22S1045
	22 cor	e an	d reco	mme	nded	loci +	2 add	itional	loci	
2012	D3	S1358	vW	A	D165	539 CSF	1P0	трох		24plex (6-dye)
F	Y± AM	D8S	1179	D21S1	1	D18	IS51	DYS3	91	
Ξ	D2S441	D19	9\$433	TH01		FGA				
go	D22S10	45	D5S818	D13	S317	D7S820		SE3	3	_
Ō	D10S	1248	D1S1	656	D12S39	1 1	D2S1338			
1										

- Examples: GeneMapperID, GMID-X, GeneMarkerHID
- Statistical analysis software?
 - Examples: PopStats, in-house Excel program, LRmix, ...

Process Involved in Capillary Electrophoresis (ABI Genetic Analyzer) Data Collection

- Injection
 - Utilizes electrokinetic injection process (sample diluted in
 - formamide) - Impacts sensitivity → peak signal height
- Separation
 - Capillary 50um fused silica, 43 cm length (36 cm to detector)
 - POP-4 polymer Polydimethyl acrylamide
 - Buffer TAPS pH 8.0
 - Denaturants urea, pyrolidinone
- Detection
 - fluorescent dyes with excitation and emission traits
 - CCD with defined virtual filters produced by assigning certain pixels

Other supportive material: statistical formulae, references, and glossary

Greg Matheson on Forensic Science Philosophy

The CAC News – 2nd Quarter 2012 – p. 6 "Generalist vs. Specialist: a Philosophical Approach" http://www.cacnews.org/news/2ndq12.pdf

 If you want to be a technician, performing tests on requests, then just focus on the policies and procedures of your laboratory. If you want to be a scientist and a professional, learn the policies and procedures, but go much further and learn the philosophy of your profession. Understand the importance of why things are done the way they are done, the scientific method, the viewpoint of the critiques, the issues of bias and the importance of ethics.

Input Information	Decision to be made	How decision is made
Data file	Peak or Noise	Analytical threshold
Peak	Allele or Artifact	Stutter threshold; precision sizing bin
Allele	Heterozygote or Homozygote or Allele(s) missing	Peak heights and peak height ratios; stochastic threshold
Genotype/ full profile	Single-source or Mixture	Numbers of peaks per locus
Mixture	Deconvolution or not	Major/minor mixture ratio
Low level DNA	Interpret or not	Complexity/uncertainty threshold
Poor quality data	Replace CE components (buffer, polymer, array) or call service engineer	Review size standard data quality with understanding of CE principles

Interpretation of DNA Typing Results

SWGDAM Guideline 3.1.1.1.

In general, the empirical criteria are based on qualitative and/or quantitative characteristics of peaks. As an example, dye artifacts and spikes may be distinguished from allelic peaks based on morphology and/or reproducibility. *Stutter and non-template dependent nucleotide addition peaks may be characterized based on size relative to an allelic peak and amplitude.*

	TF	•OX -	- [A	ATG] _N		
		0:		Stutter		
Locus Al	lele	Size	#	Median	MADe	
TPOX	8	265.2	86	2.1	0.5	
	9	269.2	21	2.9	0.4	
	11	277.2	75	3.6	0.4	
	12	281.2	14	4.3	0.4	
		Avg	196	3.3	0.4	
		SD		0.9		
Ave	rage	stutter _i 6% >	_{Locus} + > 2%	3SD = 6%	%	

Assessing **Peak Height Ratios** to associate potential allele pairs into locus genotypes

			Mean		Median		Percentiles	
Locus	Δbp	#	X	s(X)	X	s(X)	Min	Max
D13S317	4	103	0.913	0.082	0.930	0.079	0.637	1.000
	8	49	0.879	0.083	0.900	0.091	0.652	0.998
	12	24	0.867	0.079	0.874	0.084	0.639	0.979
	16	20	0.855	0.080	0.847	0.070	0.696	0.997
	20	11	0.828	0.069	0.822	0.067	0.742	0.95
D18S51	4	63	0.878	0.097	0.900	0.100	0.554	0.998
	8	49	0.894	0.100	0.905	0.112	0.704	0.99
	12	44	0.866	0.104	0.876	0.116	0.583	0.997
	16	27	0.872	0.107	0.895	0.119	0.574	0.995
	20	22	0.807	0.100	0.796	0.112	0.644	0.963
	28	10	0.795	0.115	0.785	0.138	0.641	0.936
D8S1179	4	105	0.884	0.082	0.886	0.079	0.683	0.997
	8	61	0.895	0.090	0.908	0.085	0.714	0.990
	12	26	0.857	0.105	0.898	0.099	0.485	1.000
	16	14	0.886	0.088	0.891	0.094	0.620	0.999

Comparison of Expected and Simulated Mixture Results

Expected Results when estimating # of contributors:

- If 2, 3, or 4 alleles are observed at every locus across a profile then 2 contributors are likely present
- If a maximum of 5 or 6 alleles at any locus, then 3 contributors are possible
- If >6 alleles in a single locus, then >3 contributors

Results from Simulation Studies:

 Buckleton et al. (2007) found with a simulation of four person mixtures that 0.02% would show four or fewer alleles and that 76.35% would show six or fewer alleles for the CODIS 13 STR loci.

Buckleton et al. (2007) Towards understanding the effect of uncertainty in the number of contributors to DNA stains. FSI Genetics 1:20-28

Emp

the STR profiles resu the profiler plus and 9 We open the discussion and Ltd. All rights re

• We inform our assumptions with data from validation studies...

