Approaches to handling complex mixtures

ISFG basic mixture interpretation workshop Jo-Anne Bright

Specialist Science Solutions
Manaaki Tangata Taiao Hoki
protecting people and their environment through science

Introduction

- The binary method of DNA interpretation has served us well for many years
- Interpretation methods have not kept pace with advances in technology
- More trace DNA, more mixtures
- Under certain circumstances the binary method can be extended to interpret mixtures where dropout is possible
- Application and limitations are discussed in this talk

Emerging researcher article

A comparison of statistical models for the analysis of complex forensic DNA profiles

Hannah Kelly ${ }^{\text {a,b,* }}$, Jo-Anne Bright ${ }^{\text {a }}$, John Buckleton ${ }^{\text {a }}$, James Curran ${ }^{\text {b }}$
${ }^{\text {a }}$ ESR, PB 92021, Auckland 1142, New Zealand
${ }^{\text {b }}$ Department of Statistics, University of Auckland, PB 92019, Auckland 1142, New Zealand

The binary model

- Possible genotype combinations are considered either 'in' or 'out'
- Manual method
- Can be extended to mixtures with 3 or more contributors
- Two subsets:
- The constrained model
- The unconstrained model

Qualitative binary method

- Most basic implementation of the binary model
- No peak height information taken into account
- Implemented in software:
- POPSTATS
- DNAMIXI
- DNAMIX II (with 4.2 formulae)
- DNAMIX III (with 4.2 and Beecham and Weir sampling uncertainty)

Unconstrained approach

Unconstrained method of mixture interpretation:

- Write out all possible genotype combinations under H_{2}
- Do not rule any combinations out
- Less use of the information
- More efficient time wise

Semi-quantitative binary method

- Making partial use of the profile data
- Empirical guidelines and expert judgement are used to exclude certain genotype combinations
- Heuristics such as:
- Heterozygote balance
- Mixture proportion
- The semi-quantitative model is mainly applied manually
- An exception is GeneMapper® ${ }^{\circledR} / D-X$

Constrained approach

Constrained method of mixture interpretation:

- Write out all possible genotype combinations under H_{2}
- Exclude combos based on some set of heuristics:
- Peak imbalance
- Mixture proportion
- Simplify the H_{2} (apply the sampling formula, 4.2)
- Uses more of the profiling data
- More time consuming

Hb versus average peak height

Variability of Hb

Conventional thresholds

 95% intervals

CESR

Variability in mixture proportion

Forensic Science International: Genetics
Volume 4, Issue 2, February 2010, Pages 111-114

Examination of the variability in mixed DNA profile parameters for the Identifiler ${ }^{\text {TM }}$ multiplex
Jo-Anne Bright \boxtimes, Jnana Turkington, John Buckleton \&
ESR, 120 Mt Albert Road, PB 92021, Auckland, New Zealand

Forensic Science International: Genetics
Volume 6, Issue 6, December 2012, Pages 729-734
Analysis and biostatistical interpretation of complex and low template DNA samples

Modelling heterozygote balance in forensic DNA profiles
Hannah Kelly ${ }^{\text {a. }}$, Jo-Anne Bright ${ }^{\text {a }}$, James M. Curran ${ }^{\text {b. }}$ - , John Buckleton ${ }^{\text {a }}$
" ESR, PB 92021, Auckland, New Zealand
${ }^{\text {b }}$ Department of Statistics, University of Auckland, PB 92019, Auckland, New Zealand

Dropout in a semi-quantitative method

- Traditionally, handled by dropping the locus or using the $2 p$ rule
- The $2 p$ rule assigns the probability $2 p_{a}$ to the following profile

- Where p_{a} is the probability of allele a
- Assumed to be conservative in all circumstances...

Forensic Science International
Volume 159, Issues 2-3, 2 June 2006, Pages 206-209

Is the $2 p$ rule always conservative?
John Buckleton ${ }^{\text {a }}$. $\boldsymbol{\square}$, Christopher Triggs ${ }^{\text {b. }} \boldsymbol{\square}$
${ }^{\text {a }}$ ESR, Mount Albert Science Center, Private Bag 92021, Auckland, New Zealand
${ }^{\text {b }}$ Department of Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand

- ... however this has proved a false assumption
- No longer recommended for use.

Non-concordance

Consider the following:

- Two extremes
- A - large concordant 7 allele with no 9 peak observed (non-tolerable non-concordance)
- B - small concordant 7 allele with a nonconcordant 9 peak visible sub-threshold (tolerable non-concordance)

Non-concordances

- A locus where at least one allele of the POI is not observed in the profile
- Binary models cannot deal with a locus showing a non-concordance
- Motivator for change
- Also, how do we interpret 3 and 4 person mixtures?

About 2009...

- It was known that the binary method was not the most appropriate method
- Approaching end of "best before" date
- Very hands on - operator in control
- What were our options?
- Off the shelf solutions:
- Expensive
- Loss of control
- Loss of expertise
- Could we extend the life of the binary?

Extensions of the binary model

- Methods to extend the binary method to complex mixtures that have no non-concordant alleles
- There is no modification of the binary method that can deal with a non-concordant allele in a universally conservative manner
- Uses an unconstrained quantitative methods with F or Q alleles
- ' F ' designation denotes an allele that may have dropped out or 'failed'
- Any allele at the locus in question, including alleles already observed
- Q designation represents any allele at the locus except for those alleles already present

Forensic Science International: Genetics
Volume 6, Issue 2, March 2012, Pages 191-197

The interpretation of low level DNA mixtures

Hannah Kelly ${ }^{\text {a }}$ - , Jo-Anne Bright ${ }^{\text {a }}$, James Curran ${ }^{\text {b }}$, John Buckleton ${ }^{\text {a }}$
a ESR, PB 92021 Auckland, New Zealand
${ }^{\text {b }}$ Department of Statistics, University of Auckland, PB 92019 Auckland, New Zealand

Introduction to concepts

- Consider 2 person mixture
- All peak heights above threshold
- Two reference samples from POls
- H_{1} : POI 1 and POI 2
- H_{2} : Two unknowns
- Locus 1; 4 peaks; a b c d
- POI 1 = a,b

POI $2=c, d$

Locus 1, 4 peaks

- $\mathrm{H}_{1}: \operatorname{Pr}\left(\mathrm{E} \mid \mathrm{H}_{1}\right)=1$
- The hypothesis is fully explained by the evidence
- The two POls are contributors to the stain
- $\mathrm{H}_{2}: \operatorname{Pr}\left(\mathrm{E} \mid \mathrm{H}_{2}\right)=$ all possible combinations of alleles a, b, c, d
\rightarrow Write out all possible combinations

Locus $1 \operatorname{Pr}\left(\mathrm{E} \mid \mathrm{H}_{2}\right)$

C1	C2			Multipliers for reverse options	Product	Sum of products $\operatorname{Pr}\left(\mathrm{E} \mid \mathrm{H}_{2}\right)$
ab	cd	$2 \times \mathrm{pa}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}}$	$2 \times \mathrm{p}_{\mathrm{c}} \mathrm{p}_{\mathrm{d}}$	$\times 2$	$\begin{gathered} 8 \times \\ \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}} \mathrm{p}_{\mathrm{d}} \end{gathered}$	$\begin{gathered} 24 \mathrm{Pr} \\ \left(\mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}} \mathrm{p}_{\mathrm{d}}\right) \end{gathered}$
ac	bd	$2 \times \mathrm{pa}_{\mathrm{a}} \mathrm{p}^{\text {c }}$	$2 \times \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{d}}$	X 2	$\begin{gathered} 8 \times \\ \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}} \mathrm{p}_{\mathrm{d}} \end{gathered}$	
ad	bc	$2 \times \mathrm{pa}_{\mathrm{a}} \mathrm{p}_{\mathrm{d}}$	$2 \times \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}}$	X 2	$\begin{gathered} 8 \times \\ \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}} \mathrm{p}_{\mathrm{d}} \end{gathered}$	

Permutations and factorials

- The number of possible permutations for a set of elements (alleles) can be determined using factorials
- Where:
[Total number of alleles]!
[Individual allele count a]! [Individual allele count $b]$! etc
- Locus 1 example:

$$
\begin{gathered}
\frac{\mathrm{N}!}{\left[\mathrm{n}_{\mathrm{a}}\right]!\left[\mathrm{n}_{\mathrm{b}}\right]!\left[\mathrm{n}_{\mathrm{c}}\right]!\left[\mathrm{n}_{\mathrm{a}}\right]!} \\
\frac{4!}{1!1!1!1!}=24 \\
\rightarrow \operatorname{Pr}\left(\mathrm{E} \mid \mathrm{H}_{2}\right)=24 \operatorname{Pr}\left(\mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}} \mathrm{p}_{\mathrm{d}}\right)
\end{gathered}
$$

Locus 2, 3 peaks, 4 alleles
 - Crime profile: a, b, c
 - POI 1: a,b
 POI 2: b,c

- $\operatorname{Pr}\left(E \mid H_{1}\right)=1$
- The hypothesis is fully explained by the evidence
- The two POls are contributors to the stain
- $\operatorname{Pr}\left(E \mid \mathrm{H}_{2}\right)=$ all possible combinations of alleles a, b, c
\rightarrow Write out all possible combos or use the permutation approach

Locus 2, combination approach

C1	C2			Multipliers for reverse options	Product	Sum of products $\operatorname{Pr}\left(E \mid H_{2}\right)$
aa	bc	pa^{2}	$2 \times \mathrm{pb}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}}$	x2	$4 \mathrm{p}_{\mathrm{a}}{ }^{2} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}}$	$12 p_{a}{ }^{2} p_{b} p_{c}$
ab	ac	$2 \times \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}}$	$2 \times \mathrm{pa}_{\mathrm{a}} \mathrm{p}_{\mathrm{c}}$	x2	$8 p_{\mathrm{a}}{ }^{2} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}}$	
bb	ac	$\mathrm{p}_{\mathrm{b}}{ }^{2}$	$2 \times \mathrm{pa}_{\mathrm{a}} \mathrm{p}_{\mathrm{c}}$	x2	$4 \mathrm{pa}_{\mathrm{a}} \mathrm{p}^{2} \mathrm{p}_{\mathrm{c}}$	$12 p_{a} p_{\mathrm{b}}{ }^{2} \mathrm{p}_{\mathrm{c}}$
ab	bc	$2 \times \mathrm{pa}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}}$	$2 \times p_{\text {b }} \mathrm{p}_{\mathrm{c}}$	x2	$8 \mathrm{pa}_{\mathrm{a}} \mathrm{p}^{2} \mathrm{p}_{\mathrm{c}}$	
cc	ab	$\mathrm{p}_{\mathrm{c}}{ }^{2}$	$2 \times \mathrm{pa}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}}$	x2	$4 \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}}{ }^{2}$	$12 p_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}}{ }^{2}$
ac	bc	$2 \times \mathrm{pa}_{\mathrm{a}} \mathrm{p}$	$2 \times p_{\text {b }} \mathrm{p}_{\mathrm{c}}$	x2	$8 \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}}{ }^{2}$	

$$
\operatorname{Pr}\left(E \mid H_{2}\right)=12 p_{a}^{2} p_{b} p_{c}+12 p_{a} p_{b}{ }^{2} p_{c}+12 p_{a} p_{b} p_{c}^{2}
$$

Locus 2, permutation approach

- 3 peaks, 4 alleles
- One of the a, b, or c alleles is shared
- Either aabc or abbc or abcc

$$
\begin{aligned}
& \operatorname{Pr}\left(E \mid H_{2}\right)=\frac{4!}{2!1!1!} p_{a}^{2} p_{b} p_{c}+\frac{4!}{1!2!1!} p_{a} p_{b}^{2} p_{c}+\frac{4!}{1!1!2!} p_{a} p_{b} p_{c}^{2} \\
& \quad=12 p_{a}^{2} p_{b} p_{c}+12 p_{a} p_{b}^{2} p_{c}+12 p_{a} p_{b} p_{c}^{2}
\end{aligned}
$$

Peaks versus Alleles

I
One peak, 2 alleles (assuming one contributor)
One peak, 4 alleles (assuming two contributors, no D)

Two peaks, 2 alleles (assuming one contributor)
Two peaks, 4 alleles (assuming two contributors, no D)

One peak, 1 allele

Three peaks, 3 alleles

Where T = stochastic threshold

Peaks versus Alleles

- When converting peaks to alleles can use a constrained approach
- Take into account imbalance
- Try for yourselves:

1.

Assuming two contributors:
3 peaks, \qquad alleles
2.

Assuming two contributors:
2 peaks, \qquad alleles

Assuming three contributors:
3.

4 peaks, \qquad alleles

Harder examples

Example 1 - Considering dropout

- Assuming two person mixture
- Three peaks observed

- Given two contributors we're expecting to see four peaks...
- Introduce a Q allele:
- aabc or abbc or abcc or abcQ
- Or introduce an F allele:
- Could be an a, b, c, or any other
- abcF

Example 1

$$
\begin{aligned}
\operatorname{Pr}(a b c F) & =\frac{4!}{2!1!1!} p_{a}^{2} p_{b} p_{c}+\frac{4!}{1!2!1!} p_{a} p_{b}^{2} p_{c}+\frac{4!}{1!1!2!} p_{a} p_{b} p_{c}^{2}+\frac{4!}{1!1!1!1!} p_{a} p_{b} p_{c} p_{Q} \\
& =12 p_{a} p_{b} p_{c}\left[p_{a}+p_{b}+p_{c}+2 p_{Q}\right]
\end{aligned}
$$

Where $p_{Q}=1-p_{a}-p_{b}-p_{c}$
Substitution $=12 p_{a} p_{b} p_{c}\left[2-p_{a}-p_{b}-p_{c}\right]$

$$
=<2
$$

Then as a conservative approximation:

$$
p_{a} p_{b} p_{c} F \approx 24 p_{a} p_{b} p_{c}
$$

Other dropout examples - F approximation

Follow the steps:

1. Ensure no non concordances
2. Convert peaks to alleles
3. Add in the required number of F alleles to make up the difference
4. Use permutation 'formula' (factorials) to determine the multipliers
5. Add in the ordinal and then cross out the Fs

Example 2

- Assuming two person mixture
- Convert peaks to alleles:

- At least one a and one ballele
- Add in the required number of F alleles:
- Two possible drops - FF
- Use permutation 'formula' (factorials) to determine the multipliers

$$
a b F F \approx \frac{4!}{1!1!2!}
$$

- Add in the ordinal and then cross out the Fs

$$
\approx 12 p_{a} p_{b}
$$

Example 3

Follow the steps:

1. Convert peaks to alleles

2. Add in the required number of F alleles to make up the difference
3. Use permutation 'formula' (factorials) to determine the multipliers
4. Add in the ordinal and then cross out the Fs

Example 4 with likelihood ratio

- Assume 2 contributors
- One suspect reference: ab
- Apply the 'rules'.
- Peaks to alleles:
- aabc

- Under H_{1}, unknown must be ac
- Under H_{2}, all combinations of aabc

Example 4, likelihood ratio

- Apply factorials
- Cancel where appropriate

$$
\begin{aligned}
L R & =\frac{\frac{2!}{1!1!} p_{a} p_{c}}{\frac{4!}{2!1!1!} p_{a}^{2} p_{b} p_{c}} \\
& =\frac{2 p_{a} p_{c}}{12 p_{a}^{2} p_{b} p_{c}} \\
& =\frac{1}{6 p_{a} p_{b}}
\end{aligned}
$$

Example 5, 4 peaks, 4 alleles

- One POI: cd
- Assume 2 contributors, clear major
- Alleles: abcd
- Under H_{1} unknown must be a,b

Example 5, likelihood ratio

- Apply factorials
- Cancel where appropriate

$$
\begin{aligned}
L R & =\frac{\frac{2!}{1!1!} p_{a} p_{b}}{\frac{2!}{1!1!} p_{a} p_{b} \frac{2!}{1!1!} p_{c} p_{d}} \\
& =\frac{1}{2 p_{c} p_{d}}
\end{aligned}
$$

Example 6, considering dropout

- One POI: ab
- Assume 2 contributors
- Alleles: abFF

Example 6, LR

$$
\begin{aligned}
L R & =\frac{\frac{2!}{2!} F F}{\frac{4!}{1!1!2!} p_{a} p_{b} F F} \\
& =\frac{1}{12 p_{a} p_{b}}
\end{aligned}
$$

Example 7, 3 contributors

- Assume 3 contributors
- Allele set: aabceF (total 6 alleles, possible dropout)
- If suspect =ab, factorials:

Example 7, likelihood ratio

$$
\begin{aligned}
L R & =\frac{\frac{4!}{1!1!1!1!} p_{a} p_{c} p_{e} F}{\frac{6!}{2!1!1!1!1!} p_{a}^{2} p_{b} p_{c} p_{e} F} \\
& =\frac{24 p_{a} p_{c} p_{e}}{360 p_{a}^{2} p_{b} p_{c} p_{e}} \\
& =\frac{p_{a} p_{c} p_{e}}{15 p_{a}^{2} p_{b} p_{c} p_{e}} \\
& =\frac{1}{15 p_{a} p_{b}}
\end{aligned}
$$

Example 8

1. Assume 3 contributors

2. Allele set: \qquad
3. If suspect = cd factorials:

Case example

Likelihood ratio

Marker	F model	Continuous model
D8S1179	3.04	13.61
D21S11	2.05	6.82
D7S820	1.62	1.20
CSF1PO	0.61	1.43
D3S1358	2.32	11.83
TH01	4.68	16.20
D13S317	10.66	7.49
D16S539	1.51	1.13
D2S1338	13.97	2.81
D19S433	0.98	5.80
vWA	1.49	5.90
TPOX	0.59	1.97
D18S51	3.47	0.76
D5S818	0.64	3.47
FGA	5.98	3.33
Total	$1.71 \mathrm{E}+05$	$4.28 \mathrm{E}+08$

Conclusion

- Can incorporate Fst correct for population substructure
- F (and Q) formula provided as appendices to Kelly et al. paper
- Easy to implement
- Wasteful of information
- Accounts for dropout but does not calculate the probability of dropout
- Recommend a model that makes more use of the profile data
- Semi continuous or fully continuous model

Approaches to handling complex mixtures

ISFG basic mixture interpretation workshop Jo-Anne Bright

Specialist Science Solutions
Manaaki Tangata Taiao Hoki
protecting people and their environment through science

