Introduction to the LRmix program

 of the Forensim R packageHinda Haned
Peter Gill

For news updates subscribe to:
forensimnews@gmail.com
(1) Install the R software

www.cran.r-project.org

ornload and Inetall

 - Dompload for timax

- Sources of Eaplpha and beta erelesese (dally snasphots, created only in time periods before a plarned releases).

Coresponading feature requests soc bug reports.
- Source code of older verssions of R is vaviabbie here
- Contrifouted estension packagas
puestions about R
- IF yoct have questions about F like how to dowzloged and instal the softwre, or what the license terns sre, pleaser
(1) Install the R software

(1) Install the R software

An executable file will be downloaded automatically.
\square R.3.0.1.exe
\square Simply click and follow the instructions!

Press 'next' until...

Prepare your working folder first

 (make sure this is set up before the ISFG workshop)- You have been sent some data-sets in folders - place these into a working folder on your computer
- And place a short cut to R in the same folder (you can drag the R icon from your desktop)

Simply click on blue icon to launch \mathbf{R}

Set directory to your folder

Press OK to set directory

(2) Install the Forensim package

OOption 1: install the package directly from the R environment (Internet connection) - please follow this option now.
\square Also download LRmix tutorial from:
http://forensim.r-forge.r-project.org/misc/LRmix.pdf
-Option 2: Install the package manually (no Internet connexion)

- Refer to LRmix tutorial online:

(2) Install the Forensim package

Your screen should look something like this Make sure you have a message:" 'forensim' successfully unpacked"

Please try to get this far, and make sure you bring a laptop with the R program and files preloaded as described in the previous slides.

- This will save us a lot of time if you can do this.
- if you have a problem up to here, please contact me for advice: peterd.gill@gmail.com
- For those who are interested, you may wish to attempt to start an analysis of the first case
- Continue to the next slide to do this

(3) Load the Forensim library

Type the following code in the R console:
library(forensim)

(3) Load the Forensim library

Type the following code in the R console:

```
brary(forensim)
```

RRGui (32-bil)- [RCOnsole]
R
R

(4) Start LRmix

Type the following code in the R console:

Main LRmix interface

LRmixTK()

(4) Start LRmix	
Type the following code in the R console:	
library(forensim) LRmixTK()	

Input files in LRmix

n.b. The data files are already in your folder

Type 1: CSV files, they are comma separated files (','), and the decimal separator is the dot (‘.')

Type 2: tab separated files, they are tab separated ('‘t', e.g. Excel), and the dot('.') is the decimal separator

A case example

- The crime-stain is from an epithelial swab taken from the female victim
- There are two suspects accused of sexual assault, S_{1} and S_{2} respectively; both deny the offence.
- This epg is classified as a low template of three or more individuals since there are multiple alleles per locus that fall within the criterion of the low template zone (between the LDT and the stochastic threshold (T))- we expect dropout may occur, but the profiles appear to be well represented.

Never use spaces in your column-names, or in the sample-names (epg, or references)

Step 2: List the alleles with informative formatting

	Crime-stain alleles								
Marker	Allele 1	Allele2	Allele3	Allele4	S1	S1	S2	S2	Unique alleles
AMEL	X	Y			X	Y	X	Y	2
D3S1358	14	16	17	(15)	16	17	15	17	4
vWA	16	17	18	19	16	18	18	19	4
D16S539	11	12	13	15	12	13	12	12	4
D2S1338	17	19	20	(24)	19	20	17	18	4
D8S1179	9	10	13	14	9	13	13	13	4
D21S11	29	31	32		28	32	30	30	5
D18551	12	16	(15)		12	15	12	20	4
D195433	12	14	15.2	16	12	16	12	15	5
тH01	6	9.3			6	9.3	6	9.3	2
FGA	19	24	26		19	21	20	21	5

Key:
Alleles
Alleles that are shared between victim and s_{1} or s_{2} (green background).
Alleles that are found in the crime stain and not observed in any known individual (blul.
Alleles that are below the detection threshold but appear to be distinc (bracketed).
Alieles that are below the detection threshold but appear to be distinct (bracketed).
Alleles that are found in the crime stain that match a known individual under $H d$ (victim) (red typeface).

Step 3: Establish the minimum number of contributors for the preliminary' propositions

Step 4: LRmix analysis

a) The swab is from a victim (V. There are two suspects $\left(S_{1}, S_{2}\right)$ under $H p$,
b) In this example, some loci have 5 unique alleles across sets hence there is a minimum of three individuals present under Hp .
c) A similar calculation can be made under $H d$ where the sets of genotypes formed by S_{1}, S_{2} are not used, but in our rationale, it is convenient to anchor the minimum number of contributors on Hp and to assume equivalence (this is revisited later in the
procedure). procedure)
S_{1}, S_{2} and $H d=V, U$,

The $\log _{10}\left(\mathrm{LR}_{\text {min }}\right)=5.66$ is derived for a drop-out probability $\operatorname{Pr}(D)=0.16$.
$\operatorname{Pr}(\mathrm{D})$ value is in fact the 5 percentile calculated from an empirical distribution of the drop ut probability conditioned on the expected number of alleles observed relative to the hypothesised contributors, the procedure is described by Haned et a FISG 2012)
d) Consequently, the preliminary propositions are formulated as $H p=V, S_{1}, S_{2}$ and $H d=V, U, U$

Sensitivity plot

LR vs. probability of dropout

Now we show how to:
(1) Load the crime-sample profile
(2) Load the references (suspect/victim)
(3) Load your allele frequencies

(1) Load the crime-sample profiles

 click: "Load Sample Profiles"
(1) Load the crime-sample profiles

(1) Load the crime-sample profiles

33

Display the crime-sample profile
If everything looks good, press OK!

Now click 'Display profile',
To make sure the data are OK

GOTO your Melbourne Case1_data folder: choose

Display the crime-sample profile	
Now click 'Display profile', To make sure the data are OK	Importdatifild Display profiel

You cannot see the reference profiles
The program will automatically select the loci you chose in step(1)
If there are loci in the epg that are not given in the reference profile, the program will give an error message
(3) Import the allele frequencies

Now you should see this

Alter the parameters

- 2 unknown contributors under Hd
- Click OK

Results Table

- Now Carry out sensitivity analysis - click on button

Result of sensitivity analysis

LR vs. probability of dropout

$========$ Drop-out ranges:
under $\mathrm{HP}==========$
5% 5% percentile 0.22
95% percentile 0.42 95% percentile 0.42
$=======$ Drop-out ranges
under $\mathrm{Hd}=======$
under $\mathrm{Hd}========$
5% percentile 0.16
5% percentile 0.16
95% percentile 0.42

The red arrows delineate the reasonable range for $\operatorname{Pr}(\mathrm{D})$. The $\mathrm{LR} \approx 10^{6}$.

Case evaluation

Recap (with further explanation)

- So far we have only done a partial evaluation
- Think about how you would further evaluate this case?
- Are the propositions reasonable?
- Would you like to evaluate any other propositions?
- What would a final statement look like?

Why exploratory?

$>$ The purpose is not to give a 'black-box' answer because there is no definitive answer
$>$ All of the answers are conditional hence the function of the 'expert' is to explore the various possibilities, on behalf of the prosecution and defence.
> Some generalisations are possible
$>$ The 'process' used to interpret complex DNA profiles is provided in this talk
$>$ Consider a minor/minor(s) contributors in the following epg. We could regard this as a typical LTDNA profile

Step 1: examine the epg

- And Consider the case circumstances
- Is it a mixture?

Step 1

- What kind of mixture is it?
- Choose from following:
- Major/minor?
- Even?
- Do we expect drop-out?
- (compare with logistic regression)

A typical low template profile showing PrD range relative

 to thresholdsCheck the peak heights against logistic regression to work out if drop-out is expected

Change in philosophy

- With the old methods we had to 'filter' alleles and there were many restrictions about the kind of analysis that could be undertaken
- The new method can evaluate profiles without filtering alleles and are not restricted by numbers of contributors etc.
- Consequently, we are able to devise simple rules that can be followed to produce an LR.
- The questions shift towards "what are the propositions that should be considered"
- The role of the RO now becomes a facilitator of the court going discussion by following a logical process
6/2/12

Step 2: Make a table of alleles in the case-stain and the known contributors

- A format is suggested in the next slide
- Note that the procedure here differs from the Clayton guidelines since we must condition the hypotheses using all the evidence under Hp so this means that the reference samples are evaluated concurrently with the crime-stain
- However, all alleles are included so long as they are above LOD

Step 2: List the alleles with informative formatting

Crime-stain alleles									
Marker	Allele1	Allele2	Allele3	Allele4	S1	S 1	S 2	S 2	Unique alleles
AMEL	X	Y			X	Y	X	Y	2
D3S1358	14	16	17	(15)	16	17	15	17	4
VWA	16	17	18	19	16	18	18	19	4
D16S539	11	12	13	15	12	13	12	12	4
D2S1388	17	19	20	(24)	19	20	17	18	4
DSS1179	9	10	13	14	9	13	13	13	4
D21S11	29	31	32		28	32	30	30	5
D18S51	12	16	(15)		12	15	12	20	4
D19S433	12	14	15.2	16	12	16	12	15	5
TH01	6	9.3			6	9.3	6	9.3	2
FGA	19	24	26		19	21	20	21	5

Step 3: Establish the minimum number of contributors for the 'preliminary' propositions
a) The swab is from a victim (V. There are two suspects $\left(S_{1}, S_{2}\right)$ under $H p$,
b) In this example, some loci have 5 unique alleles across sets hence there is a minimum of three individuals present under $H p$.
c) A similar calculation can be made under Hd where the sets of genotypes formed by S_{1}, S_{2} are not used, but in our rationale, it is convenient to anchor the minimum number of contributors on Hp and to assume equivalence (this is revisited later in the procedure).
d) Consequently, the preliminary propositions are formulated as $H p=V, S_{1}, S_{2}$ and $H d=V, U, U$

Sensitivity plot evaluation

- Plot the LR relative to all values of PrD
- Calculate lower and upper bounds in order to decide a reasonable range
- Report the lowest value (to be conservative)

Step 5: Case re-evaluation and simplification of the propositions

Although a probative LR favouring $H p$ has resulted from the preliminary analysis, this has incorporated both suspects S_{1} and S_{2} under $H p$.

However, the likelihood ratio itself does not provide any indication about the relative weighting of the two contributions provided by S_{1}, S_{2} to the actual LR result.

Consequently, the next step in the analysis is to dissect the propositions into their constituents in order to establish the weighting and to establish the consequent probative value of the evidence per contributor under $H p$.

Step 5: Non-contributor test

-Why are we doing this?

- The process is exploratory
- So what will happen if we replace a suspect with a random man?
- We would expect the LR to be very low (an exclusion!!)
- Therefore, the non-contributor test is a measure of robustness and we consider this to be an important part of model validation

Step 5:Summarise the results

- The calculated $\mathrm{LR}(\log 10)=5.6$
- The non-contributor plot for S1 can be summarised using the one percentile, the median and the 99 percentile ($-23,-16,-8$)
- The non-contributor plot for S2 can be summarised in the same way: $(+0.1,+3.7,+7.9)$
- This means that the model is insensitive to S2 because the same result can be achieved with random man!!

What does this mean?

- Beware complex propositions - the relative weightings of the $\mathrm{S} 1, \mathrm{~S} 2$ 'contributions' are not reflected in the likelihood ratio
- Therefore complex propositions must be simplified and qualified before they can be reported
- The non-contributor plot is a useful adjunct to verify the likelihood ratio (define limitations of the model) and also provides an additional way to think about the results (court-friendly)

Step 6: Simplify the propositions

- So far we don't have evidence for S2 under Hp
- So we need to think about different propositions in order to reevaluate the evidence
- There seems to be good evidence under Hp for S1

New table with S1

Marker	Allele1	Allele2	Allele3	Allele4	S1	S1	No of unique allees
AMEL	X	Y			X	Y	2
D3S1358	14	16	17	(15)	16	17	3
VWA	16	17	18	19	16	18	4
D16S539	11	12	13	15	12	13	4
D2S1338	17	19	20	(24)	19	20	4
D8S1179	9	10	13	14	9	13	4
D21S11	29	31	32		28	32	4
D18S51	12	16	(15)		12	15	3
D19S433	12	14	15.2	16	12	16	4
TH01	6	9.3			6	9.3	2
FGA	19	24	26		19	21	4

Analysis

Visual examination of the evidence (table 2) revealed that S_{1}, has more matching alleles than S_{2}; furthermore the crime stain could be explained under Hp if it was a simple mixture of V and S_{1} (with three dropped-out alleles)

Individual S_{2} is not required at all in the analysis, since there are no missing alleles observed in the crime stain $\left(H p=V, S_{1}\right)$.

Although the number of unique alleles reduces the number of contributors to two, in order to be consistent, three contributors are evaluated and the propositions are simplified to: $H p=S_{1}, V, U$ and $H d=V, U, U$.
(note the LR is much larger if two contributors are analysed under Hp and Hd - data not shown, hence the choice of three contributors is demonstrably conservative).

Now determine the S2 effect

$H p=S_{2}, V, U ; H d=V, U, U$.

$\operatorname{Pr}\left(\mathrm{D}_{\text {min }}\right)=0.16$
$\log _{10}\left(\mathrm{LR}_{\text {min }}\right)=-2.6$ which is clearlv 'excllu sinnans'

Principles to follow when evaluating complex sets of hypotheses

Conditioning rules (a)

Conditioning hypotheses are defined by the casework circumstances

Remember to evaluate the hypotheses based on the number of contributors derived from the unique number of alleles in the 'set' observed in the epg: i.e. the sum of alleles of known contributors and the sum of alleles of the crime-stain(s) under Hp (to maximise)
Do not use the drop-in principle to 'explain awav' additional contributors

Conditioning rules (b)

- If there are two or more 'suspects' under Hp then the hypothesis should be simplified i.e. evaluate: $\mathrm{S} 1, \mathrm{~V}, \mathrm{U}$ in addition to $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~V}$
- It is important to explore the likelihood ratio by use of the non-contributor plot.

In the $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~V}$ example we show that the LR is very insensitive to $S 2$ (random man still gives a high LR)

Summary of results

Case circumstances

- Both S1 and S2 are suspects of sexual assault and a sample is taken from the victim. We condition on the victim under Hd
- No evidence for S2 in the crime stain [even though a three person evaluation with $\mathrm{S} 1, \mathrm{~S} 2$ under Hp gives a high $\mathrm{LR}=\log 10(5)$
- Advice: Simplify propositions if there are two suspects - always evaluate them separately.

LRmix practical session case 2

Peter Gill
Hinda Haned

Case details

- Murder case with a male victim killed in a fight
- There are five suspects that are apprehended by police and DNA profiled
- Is there evidence of that any of the suspects' DNA is at the crime-scene?

Crime-Stain R1

Recovered from victim's ankle, analysed for (presumed) epithelial cells.
Note: there were 5 separate crime stains in this case, but for simplicity we consider just one of these

Profiles (the LRmix input)

SampleNam	Marker	Allele1	Allele2	Allele3	Allele4	Allele5
R1	AMEL	X	Y			
R1	D3S1358	15	17			
R1	VWA	14	17	19	20	(15)
R1	D16S539	9	10	12		
R1	D2S1338	17	23			
R1	D8S1179	10	13	14	15	
R1	D21S11	28	29	30	32.2	(21)
R1	D18S51					
R1	D19S433	13	15			
R1	TH01	6	9			
R1	FGA	20				

Note only >50 rfu alleles recorded and victim alleles highlighted in red () alleles below 50 rfus but distinct on epg

EPG showing victim's alleles

How many contributors?

- Examination of the epg suggests two contributors as best option
- But bear in mind that alleles are missing, and there could be an additional contributor to consider

Care needed to incorporate the conditioning profile into the estimate of the number of contributors

The epg may suggest two contributors, but we must take into account the 'conditioning' profile(s) in order to determine the number of contributors if Hp is true.
So in our 'first round' assessment we use:

Hp: $S_{n}+V+U$
$\mathrm{Hd}: \mathrm{V}+\mathrm{U}+\mathrm{U}$

Hypotheses (1): three-person mixture

Hp: $\mathrm{S}_{5}+\mathrm{V}+\mathrm{U}$
Hd: V $+\mathrm{U}+\mathrm{U}$

$==========$ User parameter
Drop-in value: 0
$========$ Drop-out ranges: under Hp
$========$
5% percentile 0.37 95% percentile 0.63
======== Drop-out ranges: under Hd $=======$
5% percentile 0.37
95% percentile 0.63
$====$ Likelihoods \& likelihood ratios $=====$
$\operatorname{Pr}(\mathrm{D}) \log 10(\mathrm{LR})$
$\begin{array}{ll}\operatorname{Pr}(\mathrm{D}) & \text { log10(LR } \\ 0.37 & 6.45\end{array}$
$\begin{array}{ll}0.37 & 6.45 \\ 0.63 & 5.88\end{array}$
10

Hypotheses (2): two-person mixture

- If S 5 is a contributor under Hp then we can re-assess under the assumption of two-persons - A single drop-in event is encountered in locus VWA (allele 19)
- $\mathrm{Hp}=\mathrm{S} 5, \mathrm{~V} / \mathrm{Hd}=\mathrm{S} 5, \mathrm{U}$

$==========$ Drop-in value: 0.05

======== Drop-out ranges: under $\mathrm{Hp} 5 \%$
percentile 0.16
95% percentile 0.42
$=======$ Drop-out ranges: under Hd
5% percentile 0.062
95% percentile 0.42
$====$ Likelihoods \& likelihood ratios $=====$
$\operatorname{Pr}(\mathrm{D}) \log 10(\mathrm{LR})$
$\operatorname{Pr}(D)$ og $10(12$
0.0628 .22
$\begin{array}{ll}0.062 & 8.22 \\ 0.16 & 8.17 \\ 0.42 & 7.87\end{array}$
$\begin{array}{ll}0.16 & 8.17 \\ 0.42 & 7.87\end{array}$

Discussion on models

- Deciding the precise model to use is not straightforward and often multiple models can be used
- Number of contributors is not just a matter of observing the number of alleles in the epg. But is also dependent upon the conditioned profiles which usually include suspect and victim under Hp
- Do not use the drop-in principle as a convenience instead of invoking an additional contributor
- This is not what the parameter is designed for

Two or three contributors?

- Its best to think of the method we demonstrate as an imperfect model that generates a 'number' and we hope that this number is 'meaningful'.
- With LtDNA, stochastic effects increases the uncertainty of PrD
- We don't know (we will never know) which model is the best, all models are approximations.
-We do know that different models give different answers - so how can we deal with this issue?

Comparison of models

Recall that the current example gives:

- LR $=10^{5}$ (769,600, PrD=0.63, three contributors)
- LR $=10^{7}$ (75240000, $\operatorname{Pr}(\mathrm{D})=0.42$, two contributors)
\Rightarrow We don't follow principle that biggest number is the best as there would be a prosecution bias with this conclusion
\Rightarrow Rather we ask - which model(s) is reasonable, given the case information

Sensitivity plots: Both models are reasonable so long as the PrD<0.9

Note: same data but more contributors must reduce the $\operatorname{Pr}(D)$

15

What does this mean?

The non-contributor plot can be conveniently summarized by three figures (a, b, c)

- $a=\log _{10}$ (lower one percentile)
- $b=\log _{10}$ (median)
- $c=\log _{10}$ (upper one percentile)

So the two alternative models can be summarized as follows:
$>$ Three persons $\log _{10}(\mathrm{LR})=10^{5}(-5,-2,+1)$
\rightarrow Two persons $\log _{10}(\mathrm{LR})=10^{7}(-16,-14,-3)$

Testing the model

We now evaluate both models using non-
contributor tests (replacing suspect with random man)

16

Performance of models

Defined by the discriminatory metric, distinguishing between Random man model and the estimated LR

We are interested to confirm that random man gives an answer that is much less than the observed likelihood ratio (the 'distance' is given by the discriminatory metric - but this is not used to define the 'best model').

Court reporting

- For complex models there is no right or wrong answer
- There is more than one choice.
- Also different models (e.g. TrueAllele) will give different answers, given the same conditioning and this is because the modeling assumptions are different.

[^0]
Court reporting

- How sure can we be that the LR provided is meaningful?
- Random man simulation provides the
necessary assurance
- Court report would follow: (next slide)

Summary of the principles

- Make a table of alleles
- Count the number of unique alleles to decide the minimum number of contributors across the set
- Formulate a set of propositions

Evaluation of the strength of the evidence

- Evaluate the propositions
- Determine the LR
- Carry out Performance test to determine the robustness of the answer
- Re-evaluate the case and the propositions if necessary
- Report the case using suggested template

Analysis of a complex case using Exploratory Data Analysis (EDA), Part 2

Peter Gill and Hinda Haned

Why exploratory?

$>$ The purpose is not to give a 'black-box' answer because there is no definitive answer
$>$ All of the answers are conditional hence the function of the 'expert' is to explore the various possibilities, on behalf of the prosecution and defence.
> Some generalisations are possible
$>$ The 'process' used to interpret complex DNA profiles is provided in this talk
$>$ Consider a minor/minor(s) contributors in the following epg. We could regard this as a typical LTDNA profile

Step 1: examine the epg

- And Consider the case circumstances
- Is it a mixture?

Step 2

- What kind of mixture is it?
- Choose from following:
- Major/minor?
- Even?
- Do we expect drop-out?
- (compare with logistic regression)

A typical low template profile showing PrD range relative to thresholds

Check the peak heights against logistic regression to work out if drop-out is expected

Change in philosophy

- With the old methods we had to 'filter' alleles and there were many restrictions about the kind of analysis that could be undertaken
- The new method can evaluate profiles without filtering alleles and are not restricted by numbers of contributors etc.
- Consequently, we are able to devise simple rules that can be followed to produce an LR.
- The questions shift towards "what are the propositions that should be considered"
- The role of the RO now becomes a facilitator of the court going discussion by following a logical process

Step 3: Make a table of alleles in the

 case-stain and the known
contributors

- A format is suggested in the next slide
- Note that the procedure here differs from the Clayton guidelines since we must condition the hypotheses using all the evidence under Hp so this means that the reference samples are evaluated concurrently with the crime-stain
- However, all alleles are included so long as they are above LOD

Step 4: Evaluate the first

- The proposition Sffernarision,S2,V
- The proposition under Hd is $\mathrm{U} 1, \mathrm{U} 2, \mathrm{~V}$
- Note we could also use U1,V under Hd - no need for Hd to agree on the same number of contributors
- (swab from female victim so this appears in Hp, Hd)

Step 5: Sensitivity plot evaluation

- Plot the LR relative to all values of PrD
- Calculate lower and upper bounds in order to decide a reasonable range
- Report the lowest value (to be conservative)

Step 6: Non-contributor plot evaluation

-Why are we doing this?

- The process is exploratory
- So what will happen if we replace a suspect with a random man?
- We would expect the LR to be very low (an exclusion!!)
- Therefore, the non-contributor test is a measure of robustness and we consider this to be an important part of model validation

Step 7:Summarise the results

- The calculated $\mathrm{LR}=5.329$
- The Tippet plot for S1 can be summarized using the one percentile, the median and the 99 percentile (-23,-16,-8)
- The Tippet plot for S 2 can be summarised in the same way: $(+0.1,+3.7,+7.9)$
- This means that the model is insensitive to S2 because the same result can be achieved with random man

Step 8: Simplify the propositions

- So far we don't have evidence for S2 under Hp
- So we need to think about different propositions in order to reevaluate the evidence
- There seems to be good evidence under Hp for S1

Step 9: Evaluate the results and

 decide if new propositions are required| three pe | mixtur | Robustness estimation | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hp | Hd | $\log 10(\mathrm{LR})$ | LR distribution | Random | man substituted |
| S1,V,U | V,U,U | 7.2 | (-10,-5,-0.9) | S1 | |
| S2,V,U | v,U,U | -3 | (-10,-5,-0.9) | S2 | |
| S1,S2,V | V,U,U | 5.3 | (-23,-16,-8) | S1 | |
| S1,S2, V | V,U,U | 5.3 | (+0.1,+3.7,+7.9) | S2 | |

This table summarises the Likelihood ratios

- Evidence for S 2 under Hp is exclusionary
- Very strong evidence for S 1 under Hp , regardless of propositions tested
- How can we evaluate these propositions further?
- If we agree under Hp that S 2 is excluded, this means that the propostions can Be further simplified
- Let's return to the table of alleles in order to reassess the case

Evaluation(b) (Suspect2)

$H p=S 2, V, U$

 $H d=V, U, U$

Summary (second round of analysis)

- Evaluation of $\mathrm{S} 1, \mathrm{~V}, \mathrm{U}$ under Hp gives Reported LR=7.2(-10,-5,-0.9)

Principles to follow when evaluating complex sets

 of hypotheses
Conditioning rules (a)

Conditioning hypotheses are defined by the casework circumstances

Remember to evaluate the hypotheses based on the number of contributors derived from the unique number of alleles in the 'set' observed in the epg: i.e. the sum of alleles of known contributors and the sum of alleles of the crime-stain(s) under Hp (to maximise)

Do not use the drop-in principle to 'explain awav' additional_contributors

Conditioning rules (b)

If there are two or more 'suspects' under Hp then the hypothesis should be simplified i.e. evaluate: $\mathrm{S} 1, \mathrm{~V}, \mathrm{U}$ in addition to $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~V}$

It is important to explore the likelihood ratio by use of the non-contributor plot.

In the $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~V}$ example we show that the $L R$ is very insensitive to S 2 (random man still gives a high LR)

Summary of results

Case circumstances

- Both S1 and S2 are suspects of sexual assault and a sample is taken from the victim. We condition on the victim under Hd
- No evidence for S2 in the crime stain [even though a three person evaluation with S1,S2 under Hp gives a high $\mathrm{LR}=\log 10(5)]$
- Advice: Simplify propositions if there are two suspects always evaluate them separately, replacing the other with an unknown under Hp and Hd

[^0]: ## Statement

 I have evaluated the proposition that MrX is a contributor to the crime stain Y compared to the alternative proposition that MrX is not a contributor to crime stain Y using the conditions defined in the LRmix model. These conditions are as follows:
 a) MrX and the victim are both contributors to the sample
 b) An unknown person and the victim are both contributors to the sample

 The evidence is 75 million times more likely if the first proposition (a) is true, compared to the alternative described by (b).

 ## Optional:

 [This figure can be qualified with a test of robustness. To do this we replace Mr X with a random unrelated individual and we repeat the measurement of the likelihood ratio. We do this a total of 1000 times, with a different random individual each time.
 When this was carried out the greatest likelihood ratio observed was of the order of 0.001 .

