

Whatever way uncertainty is approached, probability is the only sound way to think about it.

-Dennis Lindley

Do You Have Uncertainty in Your Data?

· If allele dropout is a possibility (e.g., in a partial profile), then there is uncertainty in whether or not an allele is present in the sample...and therefore what genotype combinations Possible allele pairing with the 11 are possible If different allele combinations are possible in a mixture, then there is

Uncertainty and Probability

 "Contrary to what many people think, uncertainty is present throughout any scientific procedure."

> - Dennis V. Lindley, in his foreword to Aitken & Taroni (2004) Statistics and the Evaluation of Evidence for Forensic Scientists, Second Edition

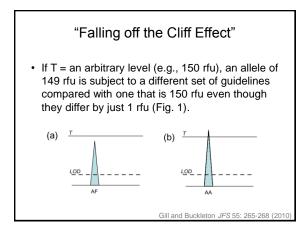
 "It is now recognized that the only tool for handling uncertainty is probability."

- Dennis V. Lindley, in his foreword to Aitken & Taroni (2004) Statistics and the Evaluation of Evidence for Forensic Scientists. Second Edition

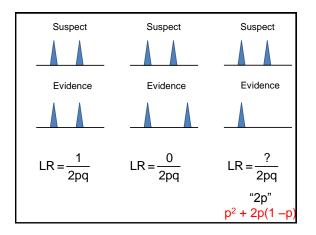
"On the Threshold of a Dilemma"

Gill and Buckleton (2010)

uncertainty in the genotype combinations that are possible...


 Although most labs use thresholds of some description, this philosophy has always been problematic because there is an inherent illogicality which we call the falling off the cliff effect.

FORENSIC SCIENCES


rensic Sci, January 2010, Vol. 55, No doi: 10.1111/j.1556-4029.2009.0125

Commentary on: Budowle B, Onorato AJ, Callaghan TF, Della Manna A, Gross AM, Guerrieri RA, Luttman JC, McClure DL. Mixture interpretation: defining the relevant features for guide-lines for the assessment of mixed DNA profiles in forensic casework. J Forensic Sci 2009;54(4):810–21.

10

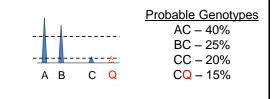
What should we do with discordant data?

- Continue to use RMNE (CPI, CPE) (not optimal)
- Use the Binary LR with 2p (not optimal)
- Semi-continuous methods with a LR (Drop models)

Some Drop Model Examples

- · LR mix (Haned and Gill)
- Balding (likeLTD R program)
- FST (NYOCME, Mitchell et al.)
- Kelly et al. (University of Auckland, ESR)
- · Lab Retriever (Lohmueller, Rudin and Inman)

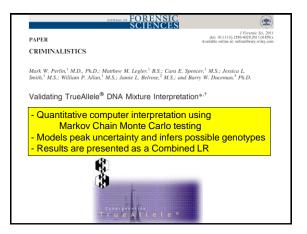
Semi-continuous methods

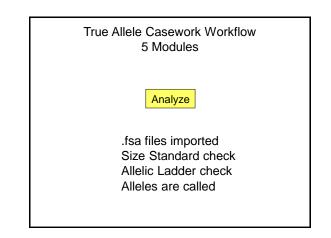

- Use a Pr(DO) and LRs
- Speed of analysis "relatively fast"
- The methods do not make full use of data only the alleles present.

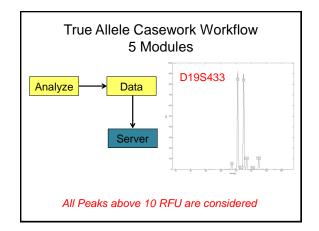
What should we do with discordant data?

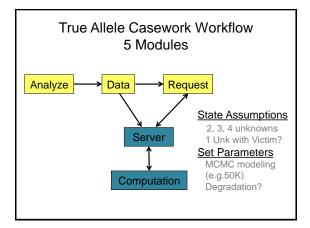
- Continue to use RMNE (CPI, CPE) (not optimal)
- Use the Binary LR with 2p (not optimal)
- Semi-continuous methods with a LR (Drop models)
- · Fully continuous methods with LR

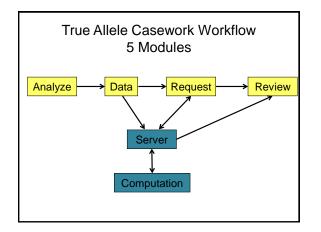
Continuous Models

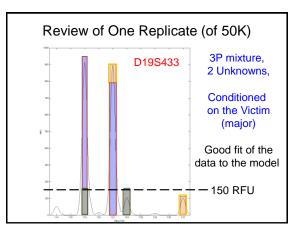

 Mathematical modeling of "molecular biology" of the profile (mix ratio, PHR (Hb), stutter, etc...) to find optimal genotypes, giving WEIGHT to the results.

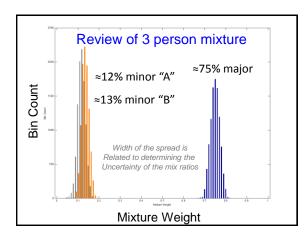

Some Continuous Model Examples

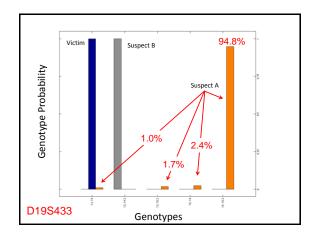

- TrueAllele (Cybergenetics)
- STRmix (ESR [NZ] and Australian collaboration)
- Cowell et al. (FSI-G (2011) 5:202-209)

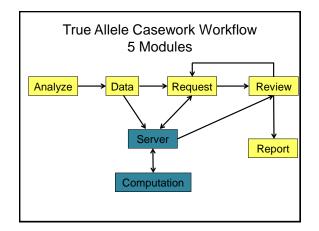

Weights are determined by performing simulations of the data (Markov Chain Monte Carlo - MCMC)

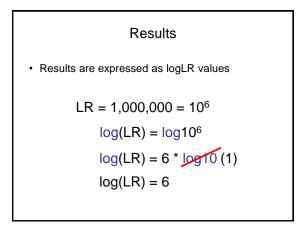


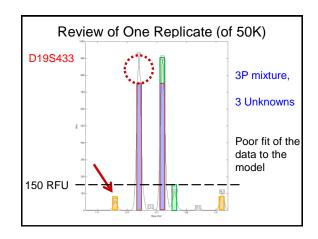


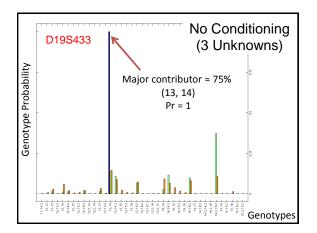


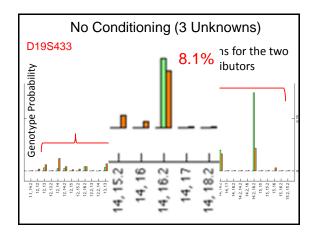




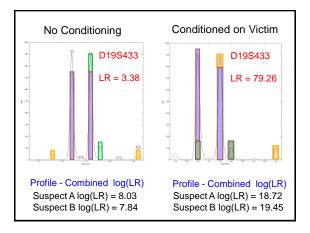


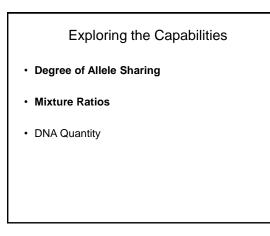


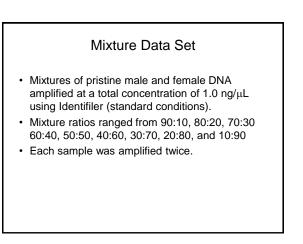


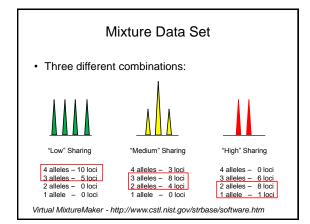


			Genotype Probability Distribution			Weighted Likelihood		Likelihood Ratio	
	allele pair	Likelihood	Questioned	Reference	Suspect	Numerator	Denominator	LR	log(L
locus	х	l(x)	q(x)	r(x)	s(x)	l(x)*s(x)	l(x)*r(x)		
CSF1PO	11, 12	0.686	0.778	0.1448	1	0.68615	0.1292	5.31	0.72
D13S317	9, 12	1	1	0.0291	1	0.99952	0.02913	34.301	1.53
D16S539	9, 11	0.985	0.995	0.1238	1	0.98451	0.12188	8.036	0.90
D18S51	13, 17	0.999	1	0.0154	1	0.99915	0.01543	64.677	1.81
D19S433	14, 16.2	0.967	0.948	0.012	1	0.96715	0.01222	79.143	1.89
D21S11	28, 30	0.968	0.98	0.0872	1	0.96809	0.08648	11.194	1.04
D2S1338	23, 24	0.998	1	0.0179	1	0.99831	0.01787	55.866	1.74
D3S1358	15, 17	0.988	0.994	0.1224	1	0.98759	0.12084	8.14	0.91
D55818	11, 11	0.451	0.394	0.0537	1	0.45103	0.07309	6.17	0.7
D7S820	11, 12	0.984	0.978	0.0356	1	0.98383	0.03617	27.198	1.43
D8S1179	13, 14	0.203	0.9	0.1293	1	0.20267	0.02993	6.771	0.83
FGA	21, 25	0.32	0.356	0.028	1	0.31986	0.01906	16.783	1.22
TH01	7, 7	0.887	0.985	0.1739	1	0.88661	0.15588	5.687	0.75
TPOX	8, 8	1	1	0.1375	1	1	0.13746	7.275	0.86
vWA	15,20	0.998	0.996	0.0057	1	0.99808	0.00569	174.834	2.24

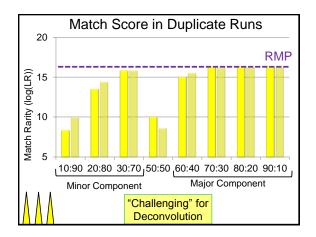


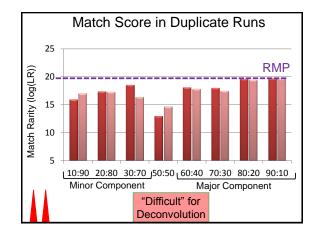


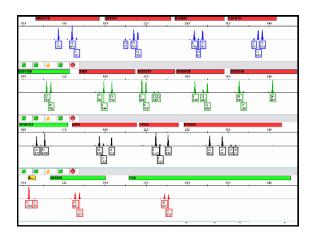


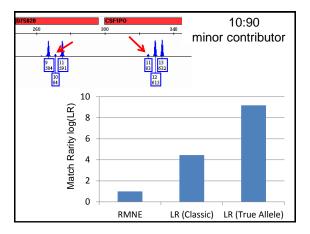


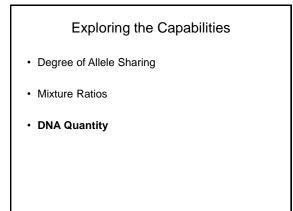
	log(LR)	UL	1.48	L*5	\$	1	Q	- U	allele pair	locus
			0.00028			0.1052	8,146	0.882	13 . 14	D195433
			0.00118			0.0044	8.189	0.278	14.2, 16.2	
Suspect "A"			89999.9			0.0498	8.093	0.882	14 , 14	
Juspect A			0.00068			0.0392	8.088	0.817	13 , 14.2	
_			0.00016	8.01295	1	0.0128	0.081	0.013	14 , 16.2	
Genotype			0.00023			0.0131	0.074	0.018	13 , 16.2	
Genotype			0.00031			0.0361	8.067	0.809	14 , 14.2	
			0.00012			8.8498	0.059	0.882	12 , 14	
			S0000.0			0.0343	0.038	0.881	14 , 15	
			0.00007			8.8587	8.034	0.001	13 , 13	
			0.00018			0.0541	8.029	0.882	12 , 13	
			\$9999.9			0.0373	0.024	0.001	13 , 15	
			0.00010			0.0068	8.021	0.817	12 , 16.2	
			0.00023			0.0180	859.8	0.813	12 , 14.2	
20			0.00003			0.0275	0.018	0.001	14 , 15.2	
39 probable			0.00000			0.0006	0.015	0.882	15 , 16	
oo probabil			0.00003			8.8299	8.009	0.881	13 , 15.2	
			0.00084			0.0137	0.009	0.883	12 , 15.2	
genotypes			0.00000			0.0017	8.009	0.000	14 , 16	
genolypes			8.88884			0.0125	8.009	0.884	12 , 12	
0 /			0.00001			0.0172	8.006	0.001	12 , 15	
			0.00000			0.0019	8.006	0.880	13, 16	
			0.00003			0.0248	8.004	0.001		
			0.00002			0.0248	8.005	0.001	13.2, 14	
			0.00001			0.0003	8.002	0.001	14 , 18.2	
			0.00000			0.00017	8.002	0.802	13 , 19.1	
			0,00003			0.0000	8.002	0.019	12 , 13.2	
			0.00003			0.0100	8.002	0.002	14.2, 16	
			0.00002			0.0168	0.002	0.001	12.2, 13	
			0.00000			0.0019	8.001	0.882	13 . 18.2	
			0,00000			0.0015	8,001	0.801	12.2. 14	
			0.00003			0.0065	0.001	0.884	14.2. 14.2	
			8,0000,0			0.0059	8,001	0.880	15 . 15	
			0.00000			0.0095	8,001	0.800	15 . 15.2	
			0.00000			0.0000	8.001	0.881	14 , 17	
			8,0000.9			0.0042	8.001	0.880	15 , 16.2	
			0.00000			8.0038	8.001	0.001	15.2, 15.2	
			0.00060			0.0097	0.001	0.072	1.1, 14.2	
D40040	0.527	3.367	0.00385	8.01295						
D19S43										

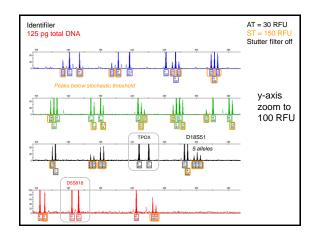


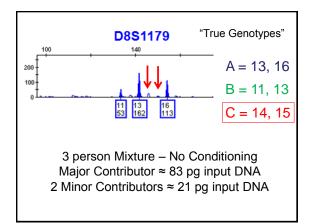


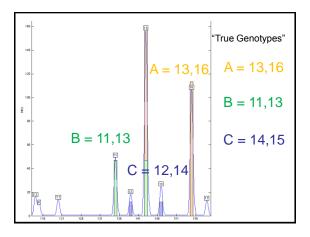


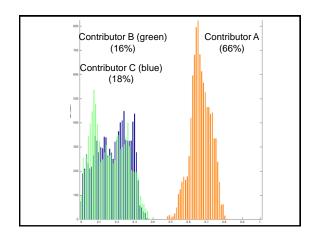


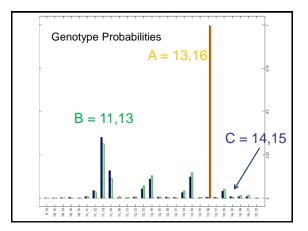


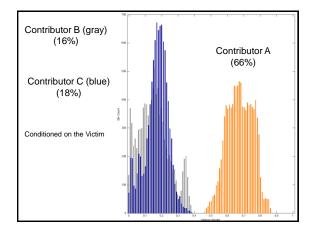


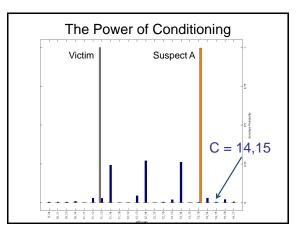








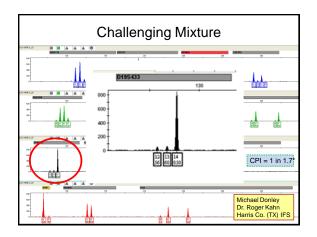




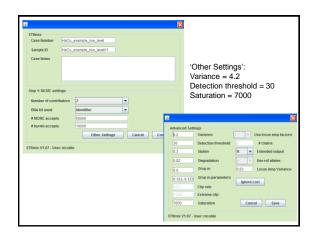
The Power of Conditioning LR (no conditioning, 3unk) 1.21 Quintillion Contributor A Contributor B (victim) 1.43 Million Contributor C 9.16 Thousand LR (conditioned on victim + 2unk) Contributor A 1.32 Quintillion Contributor B (victim) 2.19 Million Contributor C 59.8 Thousand ↑ Ranged from 1.13 to 800K

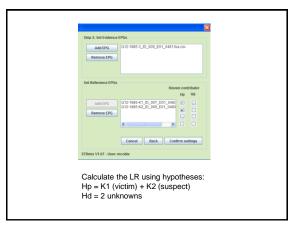
Summary True Allele utilizes probabilistic genotyping and makes better use of the data than the RMNE approach. However, the software is computer intensive. On our 4 processor system, it can take 12-16 hours to run up to four 3-person mixture samples.

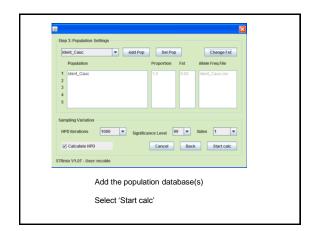
Summary

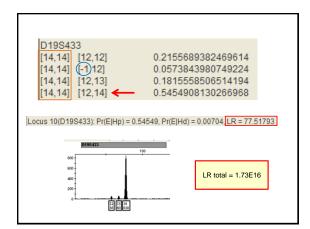

- Allele Sharing: Stacking of alleles due to sharing creates more uncertainty.
- Mixture Ratio: With "distance" between the two contributors, there is greater certainty. Generally, True Allele performs better than RMNE and the classic LR with low level contributors.

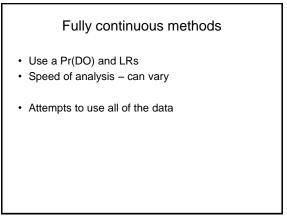
Summary

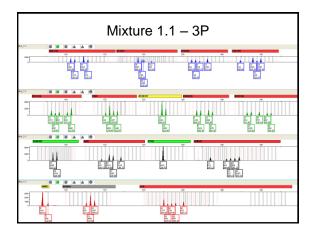

- **DNA Quantity:** Generally, with high DNA signal, replicates runs on True Allele are very reproducible.
- However, with low DNA signal, higher levels of uncertainty are observed (as expected).
- There is a need to determine an appropriate threshold for an inclusion log(LR).

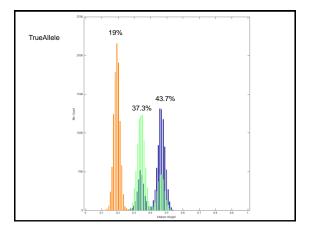


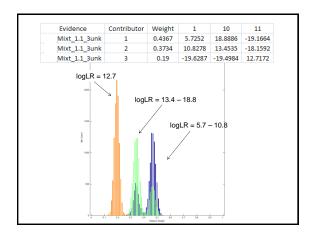


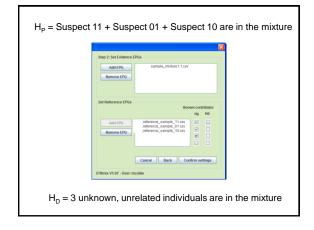


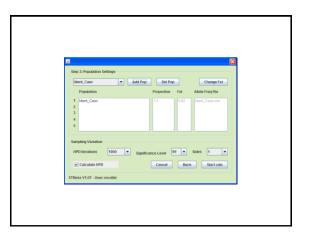


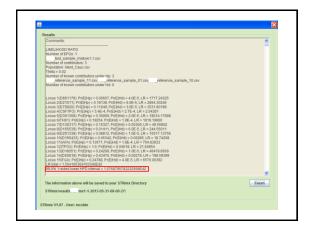


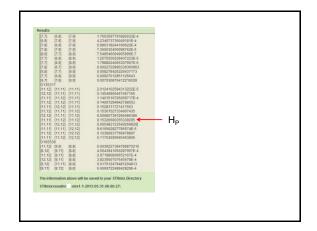



Mixture Proportions Contributor 1 - 87% Contributor 2 - 13%

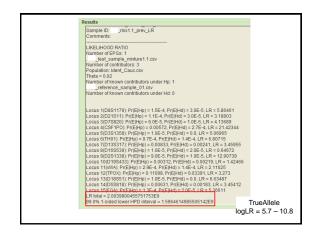


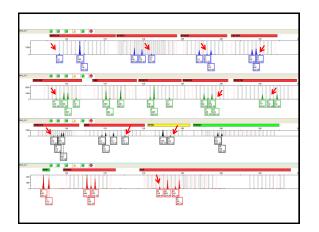


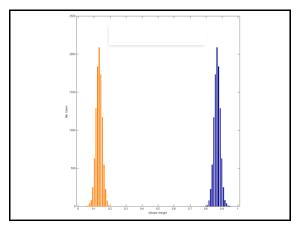


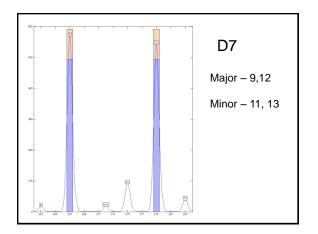

Step 2: Set Evidence EPGs Add EPG Remove EPG		
Set Reference EPGs	Known contributor Hp Hd	Step 2: Add EPGs
Add EPG Remove EPG		Import from Genemapper file Sample name in Genemapper file File Found: Name to save as
Cancel STRmix V1.07 - User: mcoble	Back Confirm settings	Choose previous STRimix EPG Rie Find STRimix Bie File Found:
		Manual entry Type file name to create here Create File
		File Created: Cancel Add EPG

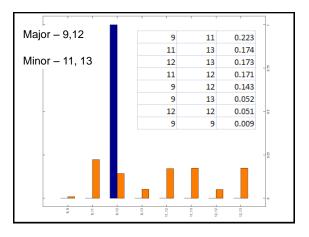
Step 2: Set Evidence EPGs Add EPG Remove EPG
Set Reference EPGs Known contributor No Mit
Cancel Back Confirm settings STRimiz VL07 - User model

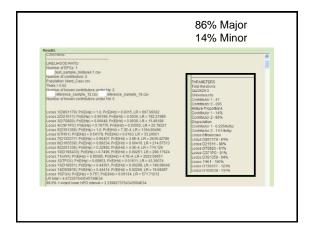


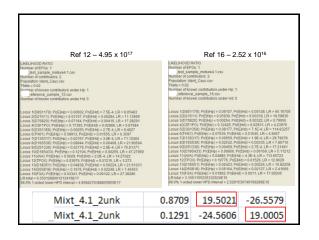





MC settings Control to	
56 56	controlution d could be address could be address could be address Cancel Condim







579
005

Acknowledgements

- ISFG
- John Buckleton and co-presenters
- Cybergenetics
- Catherine Grgicak and Robin Cotton (Boston U.)
- Charlotte Word (Charlotte Word Consulting)