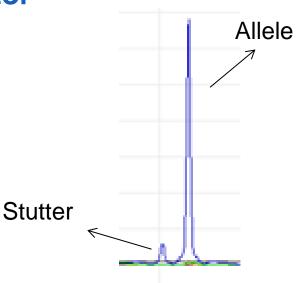


Mixture examples - using a continuous method ISFG Advanced topics in DNA interpretation

Specialist Science Solutions

Manaaki Tangata Taiao Hoki protecting people and their environment through science


Introduction

- Previously introduced a biological model
- Duncan touched on MCMC methods
- This talks combines both, demonstrating a how a continuous method of DNA interpretation works
- Includes a worked example

Total allelic product

- STRmix models the 'true' (but unknown) amount of template DNA
- Total allelic product: allele plus stutter peak heights
- Modelled by mass parameters
- Exponential equation

Modelling total allelic product

- Mass of an allele at a locus is modelled by the mass parameters:
 - Slope d_n (degradation) and intercept t_n (template)
- Mass decreases with increasing molecular weight of an allele at a locus (m_a^l)
- Locus offset at each locus A^l (locus specific amplification efficiency)

$$T_{an}^{\ell} = A^{\ell} t_n X_{an}^{\ell} \times e^{-d_n \times m_a^{\ell}}$$

Where X_{an}^{l} = dose, the count of allele *a* at locus *l* for contributor *n*: Heterozygote = 1 Homozygote = 2

Estimating mass parameters

- Determined by MCMC
- Starting state: randomly choose values for parameters
 - Genotype Set (Sj)
 - DNA amount (t_n)
 - Degradation (d_n)
 - Locus specific amplification efficiencies (A¹)

Russian mathematician Andrey Markov (1856-1922)

 Calculate the probability of obtaining the observed profile given the genotype set and mass parameters; Pr(O|S_j,M) (Pr0)

Estimating mass parameters

- A second set of parameters is proposed (step 1)
- Calculate Pr(O|S_j,M), the probability of obtaining the observed profile given the mass parameters (Pr1)
- If Pr1 >= Pr0 the proposed set of values are accepted
- If Pr1 < Pr0 then the proposed set of value is accepted only Pr1/Pr0 of the time
- If rejected, the proposed set of parameters are rejected and a new set of values are proposed

Estimating mass parameters

- For each step of the MCMC chain the mass parameters and a genotype set that differs at one locus are chosen
- Eventually the MCMC will reach 'equilibrium' where:
- DNA amount, degradation, and locus specific amplification efficiency are stable
- Limited number genotypes are chosen in proportion to their probability
- The amount of time the MCMC spends on each genotype is tallied and normalised to obtain weightings for use in the LR calculation

Peak height estimation

Use mass parameters to calculate total allelic product

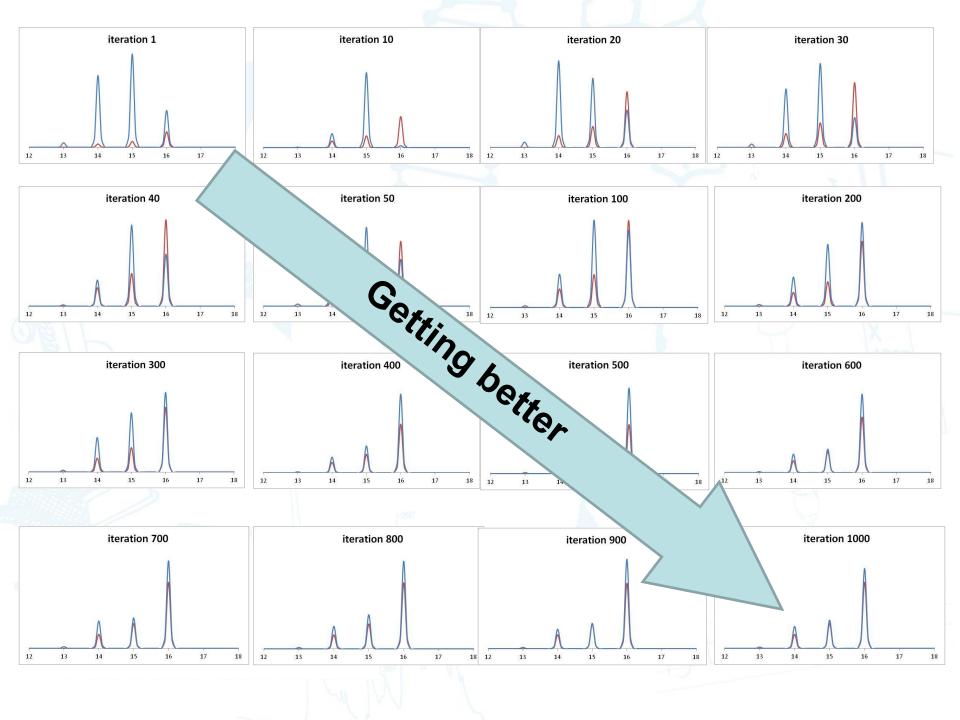
$$T_{an}^{\ell} = A^{\ell} t_n X_{an}^{\ell} \times e^{-d_n \times m_a^{\ell}}$$

- The total allelic product from an allele is divided into stutter and allelic peak heights
- The height of the stutter and allelic peaks formed from allele *a* contributor *n* are calculated by:

Allele
$$E_{an}^{\ell} = \frac{T_{an}^{\ell}}{1 + SR_{a}^{\ell}}$$

Stutter

$$E_{(a-1)n}^{\ell} = \frac{SR_a^{\ell}\left(T_{an}^{\ell}\right)}{1 + SR_a^{\ell}}$$


Model distribution

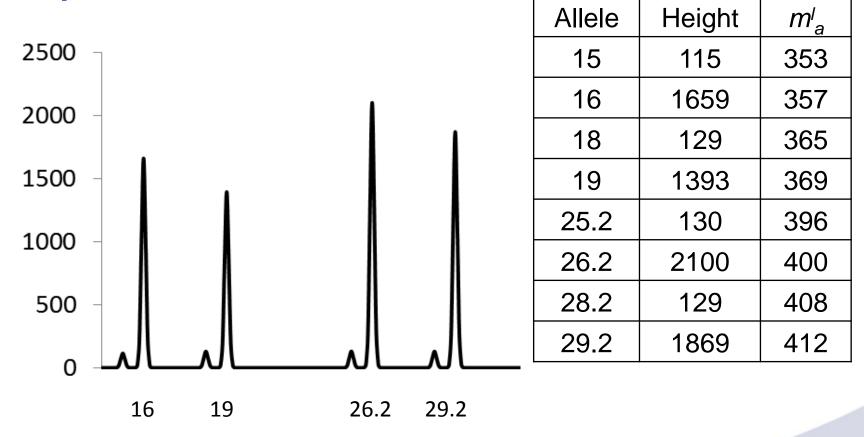
Assuming:

- an approximate normal distribution,
- mean of zero,
- a variance = $\frac{c^2}{E_{an}^l}$ for the allele model,
- and a variance = $\frac{k^2}{E_{an}^l}$ for the stutter model, then:

$$\log\left(\frac{O_{(a-1)}}{E_{(a-1)n}^{l}}\right) \sim N\left(0, \frac{k^{2}}{E_{an}^{l}}\right) \text{ for stutter}$$
$$\log\left(\frac{O_{a}}{E_{an}^{l}}\right) \sim N\left(0, \frac{c^{2}}{E_{an}^{l}}\right) \text{ for alleles}$$

Worked example

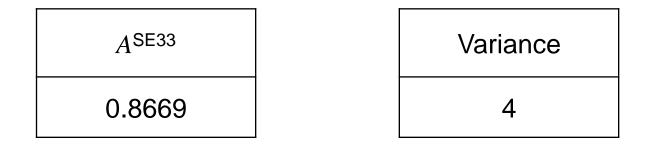
- A single locus profile example
- 8 peaks: 4 alleles, 4 stutter peaks
- I will provide mass parameters:
 - Slope d_n (degradation) and intercept t_n (template) for each contributor
 - Locus offset A¹ (locus specific amplification efficiency)
- I will provide observed profile parameters:
 - Observed peak heights
 - Molecular weight all alleles (m_a^l)
 - Allele specific stutter ratios


Simplifications

- A single locus profile example
- 8 peaks: 4 alleles, 4 stutter peaks
- We'll use the same variance constant for alleles and stutter
- We won't change the mass parameters between steps only the genotype combination

SE33

• Two person mixture


Possible genotype combinations

Number	Contributor 1		Contributor 2	
1	19	29.2	16	26.2
2	16	19	26.2	29.2
3	16	29.2	19	26.2
4	19	26.2	16	29.2
5	16	26.2	19	29.2
6	26.2	29.2	16	19

Other MCMC optimised parameters

	d_n	t_n	
Contributor 1	0.0015	850	
Contributor 2	0.001	800	

© ESR 2013

Complete the worksheet

In small groups, using your assigned genotype combination, complete the worksheet:

- Calculate total allelic product for C1 and C2
- Calculate the expected stutter and allele heights
- Calculate $Pr(O|S_i, M)$
- Report the resulting product

MCMC process

- Start with genotype combination GC1
- Randomly propose new step (another GC)
 - By rolling six sided die
- Consider new step
- Is Pr(1) > Pr(0)? Accept new step. Add to tally, propose new step and repeat
- Is Pr(1) < Pr(0)? Accept new step only a fraction of the time when Pr(1)/Pr(0).
 - Roll the 'probability die'
 - Add to relevant tally, propose new step and repeat
- Repeat thousands or millions of times!

Calculate likelihood ratio

Number	Contributor 1		Contributor 2		Product $Pr(O S_j, M)$	Expected weight
1	19	29.2	16	26.2	26	0.208
2	16	19	26.2	29.2	76	0.608
3	16	29.2	19	26.2	7	0.056
4	19	26.2	16	29.2	12	0.096
5	16	26.2	19	29.2	3	0.024
6	26.2	29.2	16	19	1	0.008

$$LR_{C} = \frac{\sum_{j} w_{j} \operatorname{Pr}(S_{j} \mid H_{1})}{\sum_{i} w_{u} \operatorname{Pr}(S_{u} \mid H_{2})}$$

Likelihood ratio

- Assuming person of interest was 16,19
- Assume that according to other (unseen) loci POI must be contributor 1

Number	Contributor 1		Contributor 2		Product $Pr(O S_j, M)$	Expected weight
1	19	29.2	16	26.2	26	0.208
2	16	19	26.2	29.2	76	0.608
3	16	29.2	19	26.2	7	0.056
4	19	26.2	16	29.2	12	0.096
5	16	26.2	19	29.2	3	0.024
6	26.2	29.2	16	19	1	0.008

Likelihood ratio

 $Pr(E | H_1) = 0.608 \times 2 \times f_{262} \times f_{292}$ $Pr(E | H_2) = 0.208 \times 2 \times f_{19} \times f_{292} \times 2 \times f_{16} \times f_{262} +$ $0.608 \times 2 \times f_{16} \times f_{19} \times f_{262} \times f_{292} +$ $0.056 \times 2 \times f_{16} \times f_{292} \times 2 \times f_{19} \times f_{262} +$ $0.096 \times 2 \times f_{19} \times f_{262} \times 2 \times f_{16} \times f_{292} +$ $0.024 \times 2 \times f_{16} \times f_{262} \times 2 \times f_{19} \times f_{292} +$ $0.008 \times 2 \times f_{262} \times f_{292} \times 2 \times f_{16} \times f_{19} +$ $=4f_{16}f_{10}f_{262}f_{202}$

Likelihood ratio, product rule

Allele	Frequency		
16	0.0456		
19	0.0659		

 $LR = \frac{0.608 \times 2f_{26.2}f_{29.2}}{4f_{16}f_{19}f_{26.2}f_{29.2}}$ $= \frac{0.608}{2f_{16}f_{19}}$ = 101.2

© ESR 2013

Likelihood ratio, sampling formula

The sampling formula (Balding and Nichols, 1994)

$$LR = \frac{0.608 \times 2f_{26.2}f_{29.2}}{4f_{16}f_{19}f_{26.2}f_{29.2}} \qquad \frac{\left[\left(x\theta + (1-\theta)p\right)\right]}{\left[1 + (n-1)\theta\right]}$$
$$= \frac{0.608}{2(\theta + (1-\theta)f_{16})(\theta + (1-\theta)f_{19})}$$
$$(1+\theta)(2+\theta)$$
$$= 8.5$$

© ESR 2013

Forensic Science International: Genetics

Volume 7, Issue 5, September 2013, Pages 516–528

Forensic population genetics - original research

The interpretation of single source and mixed DNA profiles

Duncan Taylor^ª, Jo-Anne Bright^b, John Buckleton^{b,} 📥 📟

^a Forensic Science South Australia, 21 Divett Place, Adelaide, SA 5000, Australia

^b ESR Ltd, Private Bag 92021, Auckland 1142, New Zealand

Forensic Science International: Genetics

Volume 7, Issue 2, February 2013, Pages 296-304

Developing allelic and stutter peak height models for a continuous method of DNA interpretation

Jo-Anne Bright^{a, b,} 📥 🖾, Duncan Taylor^c, James M. Curran^b, John S. Buckleton^a

* ESR Ltd, Private Bag 92021, Auckland, New Zealand

^b Department of Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand

^c Forensic Science South Australia, 21 Divett Place, SA 5000, Australia

Mixture examples - using a continuous method ISFG Advanced topics in DNA interpretation

Specialist Science Solutions

Manaaki Tangata Taiao Hoki protecting people and their environment through science