

Biological Models

ISFG Advanced mixture interpretation workshop Jo-Anne Bright

Specialist Science Solutions

Manaaki Tangata Taiao Hoki protecting people and their environment through science

Scope

- What do we know about the biology of DNA profiles?
- How can this inform interpretation models?
- How does knowing expected peak heights help?

1. Heterozygote balance

Examination of the variability in mixed DNA profile parameters for the Identifiler[™] multiplex

Jo-Anne Bright , Jnana Turkington, John Buckleton , Section , 120 Mt Albert Road, PB 92021, Auckland, New Zealand

Volume 6, Issue 6, December 2012, Pages 729-734

Modelling heterozygote balance in forensic DNA profiles

Hannah Kelly^{a, b}, Jo-Anne Bright^a, James M. Curran^{b,} M, John Buckleton^a

^a ESR, PB 92021, Auckland, New Zealand

^b Department of Statistics, University of Auckland, PB 92019, Auckland, New Zealand

Heterozygote balance

- Hb is used to:
 - Inform number of contributors to a profile
 - Restrict possible genotype combinations in a mixed DNA profile
- Important to assess bounds on Hb
- Hb rules are based on the expected height variance between a pair of alleles in a heterozygote
- Traditionally, applied across a profile

Definition of heterozygote balance

• Two definitions of heterozygote balance or peak height ratio:

$$Hb_1 = \frac{O_{HMW}}{O_{LMW}} \qquad Hb_2 = \frac{O_{\text{smaller}}}{O_{\text{larger}}}$$

- Where O is observed peak height
- Hb₁ has the highest information content because it maintains peak order
- Hb₂ may be obtained from Hb₁ but not vice versa

Hb versus average peak height

© ESR 2013

Variability of Hb

Conventional thresholds

95% intervals

Conclusion

- The mean of heterozygote balance is unaffected by average peak height
- The variance about this mean is much lower at high average peak heights
- This is true over multiple kits and PCR cycle
 numbers

Identifiler 28 cycles

ESR

NGM SElect 29 cycles

SGMPlus 34 cycles

2. Stutter ratios

- Traditionally we apply a threshold at analysis to remove stutter
 - Locus specific
 - Kit specific
- What if your minor POI was approximately same RFU as stutter?
- Is removing stutter peaks conservative?
- What if a stutter peak was actually allelic and excluded your POI?

Stutter ratios

Stutter ratios are actually allele specific

D12S391

TH01 stutter

Forensic Science International: Genetics

Volume 6, Issue 1, January 2012, Pages 58-63

Characterising stutter in forensic STR multiplexes

Clare Brookes^a, Jo-Anne Bright^b, SallyAnn Harbison^b, John Buckleton^b, ^A [·] ^{Sally}

^b Institute of Environmental Science and Research Ltd, Private Bag 92021, Auckland 1142, New Zealand

TH01 repeat structure

Common TH01 allele sequences		
Repeat structure	Allele	LUS
[AATG] ₆	6	6
[AATG] ₇	7	7
[AATG] ₈	8	8
[AATG] ₉	9	9
[AATG] ₆ ATG[AATG] ₃	9.3	6

Longest uninterrupted stretch of basic repeat motifs is a good predictor of stutter ratio

TH01 Stutter ratio versus LUS

Allele versus LUS, NGM Select loci

 $R^2 = 27\%$

 $R^2 = 61\%$

Stutter model

SR = mLUS + c

 Values for slope and intercept can be determined for each marker using regression

Stutter effect on profile slope

- Longer alleles stutter more.
- Is this the cause of observed general decreases in profile slope?

Stutter effect on profile slope

- Taking into account stutter by calculating total allelic product there's still a small but significant negative slope
- Likely to be simply due to the reduced amplification efficiency of the larger allele at a heterozygote locus

3. Profile slopes

Forensic Science International: Genetics

Volume 6, Issue 1, January 2012, Pages 97–101

Statistical model for degraded DNA samples and adjusted probabilities for allelic drop-out Torben Tvedebrink^{a,} ¹ ^(a), Poul Svante Eriksen^{a, 1,} ^(a), Helle Smidt Mogensen^{b, 2, (a)}, Niels Morling^{b, 3, (a)}

Australian Journal of Forensic Sciences

Degradation of forensic DNA profiles

DOI: 10.1080/00450618.2013.772235 Jo-Anne Bright^{ab*}, Duncan Taylor^c, James M. Curran^b & John S. Buckleton^a

Degradation slopes

Degradation curve

• Empirical data has shown that for larger multiplexes a DNA slope is best described by an exponential curve

• Equation describes an exponential curve, intercept α_0 , slope α_1 decreasing with molecular weight

4. Locus specific amplification

- Observation that some loci amplify more efficiently than others
- Results in varying peak heights off the general trend
- Locus offset at each locus allows for this variation

Locus specific amplification example

© ESR 2013

A biological model – an example

Forensic Science International: Genetics

Volume 7, Issue 2, February 2013, Pages 296-304

Developing allelic and stutter peak height models for a continuous method of DNA interpretation

Jo-Anne Bright^{a, b,} 🍐 🖾, Duncan Taylor^c, James M. Curran^b, John S. Buckleton^a

* ESR Ltd, Private Bag 92021, Auckland, New Zealand

^b Department of Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand

^c Forensic Science South Australia, 21 Divett Place, SA 5000, Australia

A biological model – an example

- A model that calculates the expected heights of allelic an stutter peaks
- Takes into account:
 - Stutter
 - Degradation
 - Locus effects
- Informed by empirical data
- For use within a continuous method of DNA interpretation

Total allelic product

- 'True' (but unknown) amount of template DNA
- PCR product: allele plus stutter peak heights
- Model template DNA based on our observations:
 - Height of peaks from a single contributor is approximately constant across loci
 - Generally trends downwards with increasing molecular weight
 - Slope may vary between contributors (i.e. degrade at different rates)
 - Individual loci may still be above or below the trend

Modelling total allelic product

- Mass of an allele at a locus is modelled by the mass parameters:
 - Slope d_n (degradation) and intercept t_n (template)
- Mass decreases with increasing molecular weight of an allele at a locus (m_a^l)
- Locus offset at each locus A^l (locus specific amplification efficiency)

$$T_{an}^{\ell} = A^{\ell} t_n X_{an}^{\ell} \times e^{-d_n \times m_a^{\ell}}$$

Where X_{an}^{l} = dose, the count of allele *a* at locus *l* for contributor *n*: Heterozygote = 1 Homozygote = 2

Peak height estimation

- The total allelic product from an allele is divided into stutter and allelic peak heights
- The height of the stutter and allelic peaks formed from allele *a* contributor *n* are calculated by:

Allele

Stutter

Test of the model

- 99 single source DNA profiles
- Applied Biosystems' Identifiler™ multiplex.
- 50 rfu analysis threshold
- Mass parameters estimated by MLE
- Total allelic product calculated
- Expected height of all allele and stutter peaks calculated
 - Applying the LUS model for stutter ratio

Variance of stutter model

Variance of allele model

Model distribution

Assuming:

- an approximate normal distribution,
- mean of zero,
- a variance = $\frac{c^2}{E_{an}^l}$ for the allele model,
- and a variance = $\frac{k^2}{E_{an}^l}$ for the stutter model, then:

$$\log\left(\frac{O_{(a-1)}}{E_{(a-1)n}^{l}}\right) \sim N\left(0, \frac{k^{2}}{E_{an}^{l}}\right) \text{ for stutter}$$
$$\log\left(\frac{O_{a}}{E_{an}^{l}}\right) \sim N\left(0, \frac{c^{2}}{E_{an}^{l}}\right) \text{ for alleles}$$

Assumption

- Assumption of independence across alleles and stutter at a locus
 - i.e. peak heights in a profile are not correlated
- However, a larger than expected stutter peak is likely to be associated with a smaller than expected allelic peak
 - If stutter occurs early in PCR this results in increased stutter height at the detriment to the allele height
- For any given allele if the stutter peak is above expectation given the *LUS* we expect the allelic peak to be below expectation

Log(O/E) HMW vs LMW Allele

ESR

Log(O/E) Allele vs Stutter

• No detectable correlation between stutter and allele in the biological model

Biological Models

ISFG Advanced mixture interpretation workshop Jo-Anne Bright

Specialist Science Solutions

Manaaki Tangata Taiao Hoki protecting people and their environment through science