Penn State University November 14, 2011 – University Park, PA

Forensic DNA Research at the U.S. National Institute of Standards and Technology

Becky Hill

Applied Genetics Group National Institute of Standards and Technology Gaithersburg, Maryland

Presentation Outline

Please ask

questions

• NIST

- location, role, organizational structure, funding

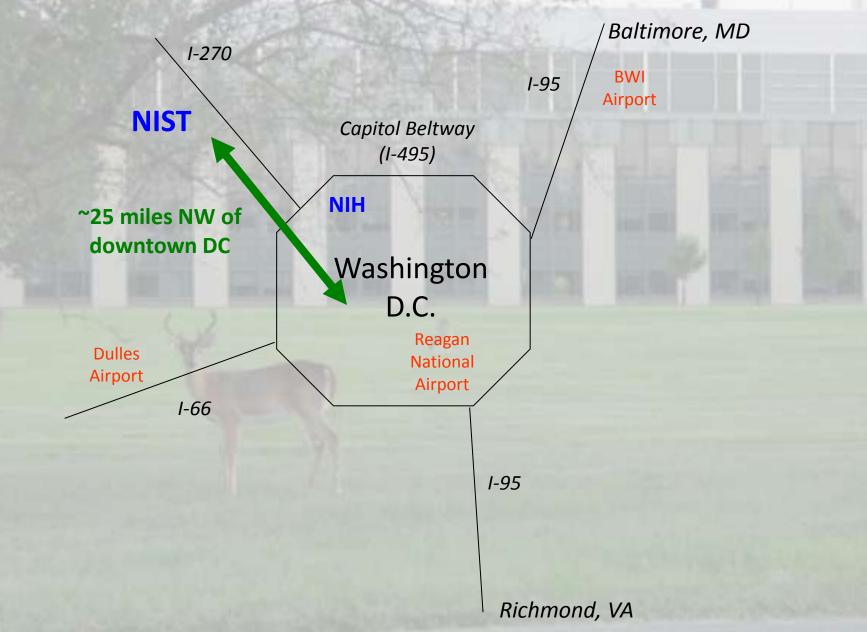
Applied Genetics Group

- members, expertise, funding

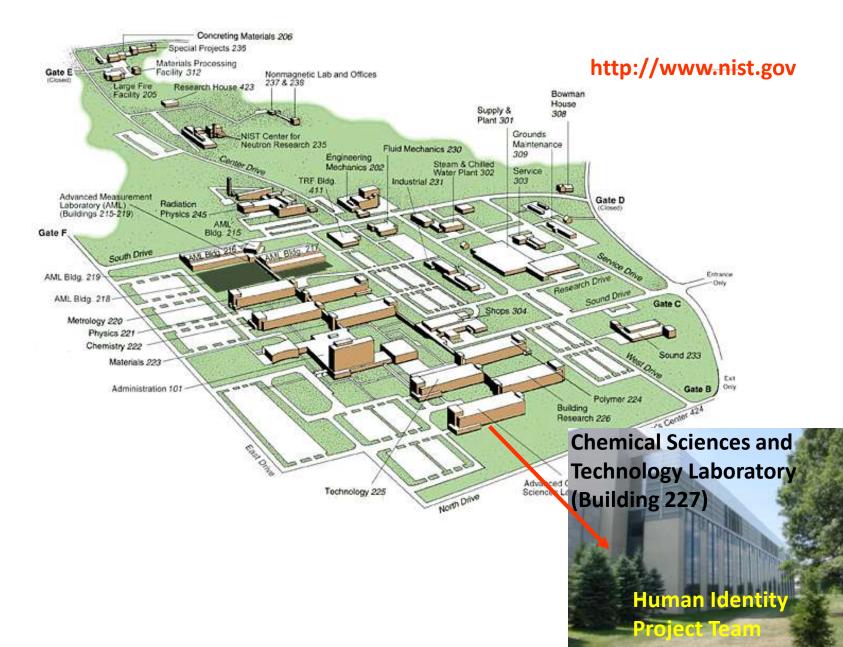
Standard Reference Materials (SRMs)

- SRM 2391c: DNA Profiling Standard

• Forensic DNA Research


Concordance studies, miniSTRs and 26plex

Final thoughts and some advice for you...


NIST Background

U.S. National Institute of Standards and Technology Department of Commerce

Location of NIST

NIST Gaithersburg Campus

National Institute of Standards & Technology (NIST)

- Non-regulatory agency established in 1901 in the US Department of Commerce.
- Mission to promote US innovation and industrial competitiveness by advancing measurement science, standards & technology.
- NIST is at the top of the US standards pyramid for a wide variety of physical standards, test methods, and calibrations.

Early Driver for U.S. Standards

1904

 Out-of-town fire companies arriving at a Baltimore fire cannot couple their hoses to the hydrants. 1526 buildings razed.

1905

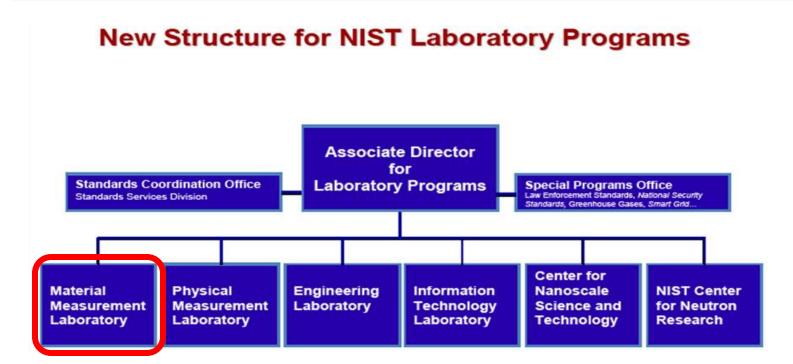
 National Fire Protection Association adopted NBSdeveloped national hose coupling standard.

NIST Today

Major Assets

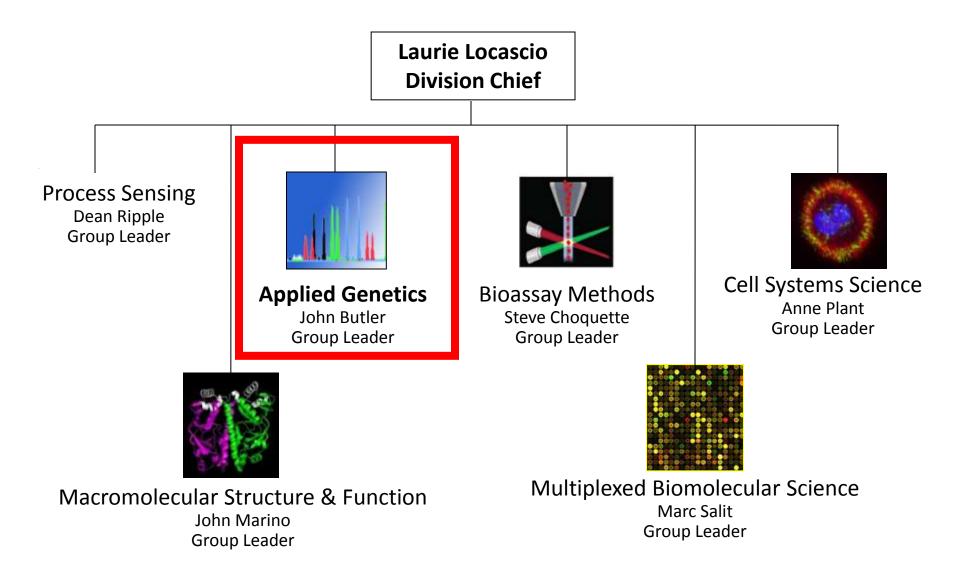
- ~ 2,900 employees
- ~ 2600 associates and facilities users
- ~ 400 NIST staff on about 1,000 national and international standards committees
- 3 Nobel Prizes in past 15 years

Major Programs


- NIST Laboratories
- Baldridge National Quality Program
- Hollings Manufacturing Extension Partnership
- Technology Innovation Program

Joint NIST/University Institutes:

- JILA
- Joint Quantum Institute
- Institute for Bioscience & Biotechnology Research
- Hollings Marine Laboratory


The NIST Laboratories

Traditionally focused research and measurement service activities on physical science and engineering disciplines

Bioscience and Health identified as a new area for significant emphasis for NIST labs

NIST Biochemical Science Division

NIST Applied Genetics Group

Applied Genetics Group Mission Statement

Advancing technology and traceability through quality genetic measurements to aid work in

- forensic DNA testing
- clinical diagnostics
- cell line authentication
- agricultural biotechnology
- DNA biometrics

APPLIED GENETICS Group

Major Programs Currently Underway

Forensic DNA

- New loci and assays (26plex)
- STR kit testing
- Ancestry SNP assays
- Low-template DNA studies
- Mixture interpretation
- STR nomenclature
- Variant allele cataloging and sequencing
- Expert systems review
- Training workshops to forensic DNA laboratories
- Validation information and software tools
- Textbook 3rd ed. (2 vol.)

Clinical Genetics

- Huntington's Disease SRM
- CMV SRM
- Exploring future needs

Ag Biotech

 – "universal" GMO detection/ quantitation (35S promoter)

DNA Biometrics

- Rapid PCR methods
- Efforts to standardize testing of future portable DNA systems
- Kinship analysis
- **Cell Line Authentication**

Group Expertise and Funding Sources

Group Expertise

- Reference Material Characterization
- Standard Information Resource Development
- Rapid Multiplex PCR Assay Construction
- Short Tandem Repeat (STR) Genotyping
- Single Nucleotide Polymorphism (SNP) Genotyping
- DNA Sequencing
- Training Materials and Workshops (validation info)

Current Funding Sources

- National Institute of Justice (Forensic DNA)
- FBI Science & Technology Branch (DNA Biometrics)
- **NIST SRM Program** (SRM development and production)
- Base funding from Congress (clinical DNA)

NIST Human Identity Project Teams within the Applied Genetics Group

Forensic DNA Team

Funding from the National Institute of Justice (NIJ) through NIST Office of Law Enforcement Standards

Coble

John Butler

Mike

Becky Hill

Margaret Kline

Workshops & **Textbooks**

Mixtures, mtDNA & Y

Concordance & LT-DNA SRM work, variant alleles & Cell Line ID

Researcher

Guest

DNA Biometrics Team

Funding from the FBI S&T Branch through NIST Information Access Division

Manuel Fondevila Alvarez

> Data Analysis Support

Dave Duewer

Pete Vallone

Rapid PCR,

Direct PCR &

Biometrics

Erica

Butts

DNA

Kevin **Kiesler**

ABI 3500 & mtDNA & Mass Spec Extraction

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

The Research, Development, and Evaluation Agency of the U.S. Department of Justice

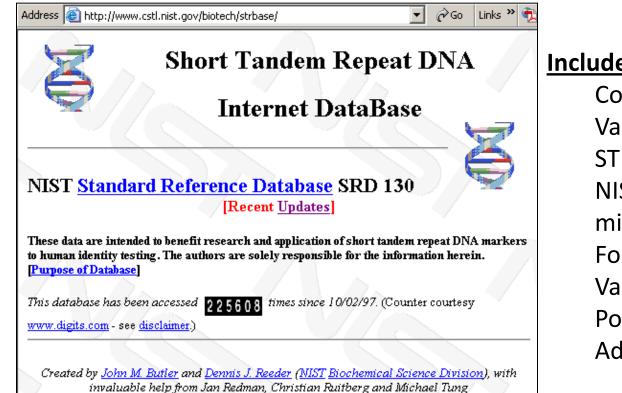
Current Areas of NIST Effort with Forensic DNA

Standards

- Standard Reference Materials
- Standard Information Resources (STRBase website)
- Interlaboratory Studies

Technology

- Research programs in STRs, SNPs, miniSTRs, Y-STRs, mtDNA, qPCR, LT-DNA, mixtures, rapid PCR
- Assay and software development, expert system review


Training Materials

- Textbooks, review articles and workshops on STRs, CE, validation
- PowerPoint and pdf files available for download
- Training workshops conducted to scientists, lawyers, and students

http://www.cstl.nist.gov/biotech/strbase/NIJprojects.htm

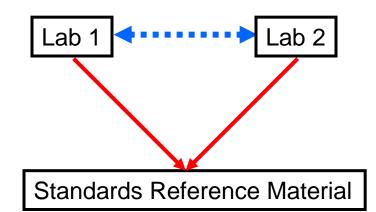
Information Resource

http://www.cstl.nist.gov/biotech/strbase

Includes information on:

Core STR loci Validation STR reference list NIST publications miniSTRs Forensic SNPs Variant STR alleles Population data resources Addresses of scientists

Provides up-to-date information and has been used in court cases to support application of DNA technology


Standard Reference Materials (SRMs) http://www.nist.gov/srm

Traceable standards to ensure accurate and comparable measurements between laboratories

National Institute of Standards & Technology Certificate of Analysis Standard Reference Material® 2391b PCR-based DNA Profiling Standard

SRM 2391b – autosomal STRs SRM 2392 &-I – mtDNA sequencing SRM 2395 – Y-STRs SRM 2372 – DNA quantitation SRM 2394 – mtDNA heteroplasmy SRM 2399 – Fragile X

Calibration with SRMs enables confidence in comparisons of results between laboratories

Helps meet ISO 17025 needs for traceability to a national metrology institute

2003: NIST SRM 2391b

Driven primarily by commercial kit loci...

🚡) National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material® 2391b

PCR-based DNA Profiling Standard

This Standard Reference Material (SRM) is intended primarily for use in the standardization of forensic and paternity quality assurance procedures for Polymersue Chain Reaction (PCR)-based genetic testing and for instructional law enforcement or non-clinical research purposes. This SRM can also be used for quality assurance when assigning values to in-house control materials. It is not intended for any human or animal clinical diagnostic use. Note that SRM 2301b is alightly modified from SRM 2301, in that there is more emphasis on Short Tandem Repeats (STRa) and less emphasis on D1880 [1,2] reflecting the growing interest and utility of STRa [3 to 14]. Additional information on each STR locus can be found at a NIST-approximated database on the interest: http://www.cstl.mint.gov/bittechi/atbase [14].

This SRM is composed of well-characterized human deoxyribonucleic acid (DNA) in two forms: genomic DNA and DNA to be extracted from cells apotted onto filter paper. A unit of the SRM is composed of 12 focam components packaged in one box. See the section in this certificate entitled *Description of Components* for a complete listing of the components.

Certified Values: The SRM is certified for genetic loci of forensic interest that were commercially available at the time of production. Genetic types for these loci can be found in Tables 1, 2, and 3. The tables are organized as follows: Table 1 lists the genetic types for the Federal Bureau of Investigation's (FBFs) CODIS (<u>COmbined DNA</u> Index System) core STR loci; Table 2 lists additional STR loci of interest; and Table 3 lists the genetic types for D1S80, AmpliType[#] PM + HLADQA1, and Amelogenin.

Expiration of Certification: The certification of this SRM is valid until 31 December 2008, provided the SRM is handled and stored in accordance with the instructions given in this certificate. However, the certification is invalid if the SRM is contaminated or otherwise modified.

Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of certification, NIST will notify the purchaser. Return of the attached registration card will facilitate notification.

Storage: Store frozen at a temperature of -20 °C. DO NOT use a self-defrosting freezer because periodic cycling of temperatures may cause shortened shelf life of this SRM.

The overall direction and ecordination of the technical activities leading to certification were under the chairmanship of J.M. Butler of the NIST Biotechnology Division.

Analytical determination and technical measurements leading to the certification of this SRM were performed by M.C. Kline and J.W. Redman of the NIST Biotechnology Division.

The support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the NEST Standard Reference Materials Group by C.S. Davis.

> Vincent Vilker, Acting Chief Biotechnology Division John Ramble, Jr., Chief

Measurement Services Division

Gaithenburg, MD 20899 Certificate Issue Date: 06 December 2002

2. Certified Values for Additional STR Loci

F13B	FES/FPS	LPL	Penta D	Penta E	D2S1338	D19S433
10,10	12,12	10,11	10,15	7,12	17,23	13,16.2
8,10	10,11	40				16
9,10	11,12				I STR	4
6,9	10,13	cha	racte	rized	acros	S 3
8,9	11,13	12	2 DNA	A san	nples	14
9,10	11,11	10,12	9,12	12,14	25,25	12,14
6,8	11,11*	11,12	3.2,11	12,16	17,22	13,15.2
6,8	10,11	9,11	8,9	5,10	22,22	12.2,15
8,10	10,12	11,12	12,12	12,13	19,23	14,15
8,8	11,11	10,12	8,12	11,11	23,23	13,14
8,10	10,12	11,12	12,12	12,13	19,23	14,15
8,8	11,11	10,12	8,12	11,11	23,23	13,14

Page 1 of 7

NIST Standard Reference Material (SRM) for Forensic DNA Testing

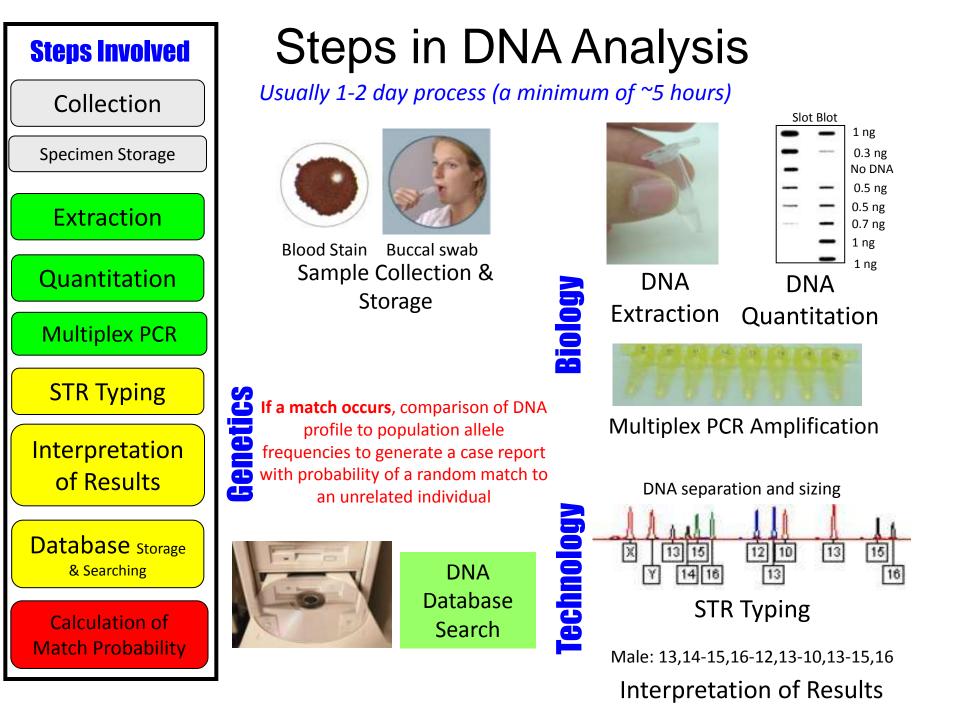
SRM 2391b (2003-2011)

- 48 autosomal STR loci with certified values
- **10 liquid genomic DNA** components + **2 punches** (cells on 903 paper)
- All single source samples
- 4 males + 6 females
- 9947A & 9948 included

- 23 autosomal STR loci and 17 Y-STRs certified
- 4 liquid genomic DNA components + 2 punches (cells on FTA & 903 paper)
- 5 single source + 1 mixture
- 3 males + 2 females (unique)
- All new samples
 - no 9947A or 9948

SRM 2391c to replace SRM 2391b and SRM 2395 (price reduction)

SRM 2391c (2011-future)


STR Kits Tested with SRM 2391c

		Primer Mixes		
Life Technologies	Promega	Qiagen	NIST	
Identifiler	Powerplex 16	ESSplex	26plex [3]	
Identifiler Plus	Powerplex 16 HS	IDplex	miniSTRs [4,5]	
NGM	Powerplex ESX 17			
NGM SElect	Powerplex ESI 17			
COfiler	Powerplex ES			
Profiler	Powerplex S5		Alleles sequenced:	
Profiler Plus	Powerplex Y		SE33	
Profiler Plus ID	FFFL		D12S391	
SGM Plus			D1S1656	
SEfiler			Penta D	
MiniFiler			Penta E	
Yfiler			D8S1115	

22 commercial STR kits examined NIST developed 26plex and miniplexes <u>No discordant results</u> observed on SRM 2391c samples

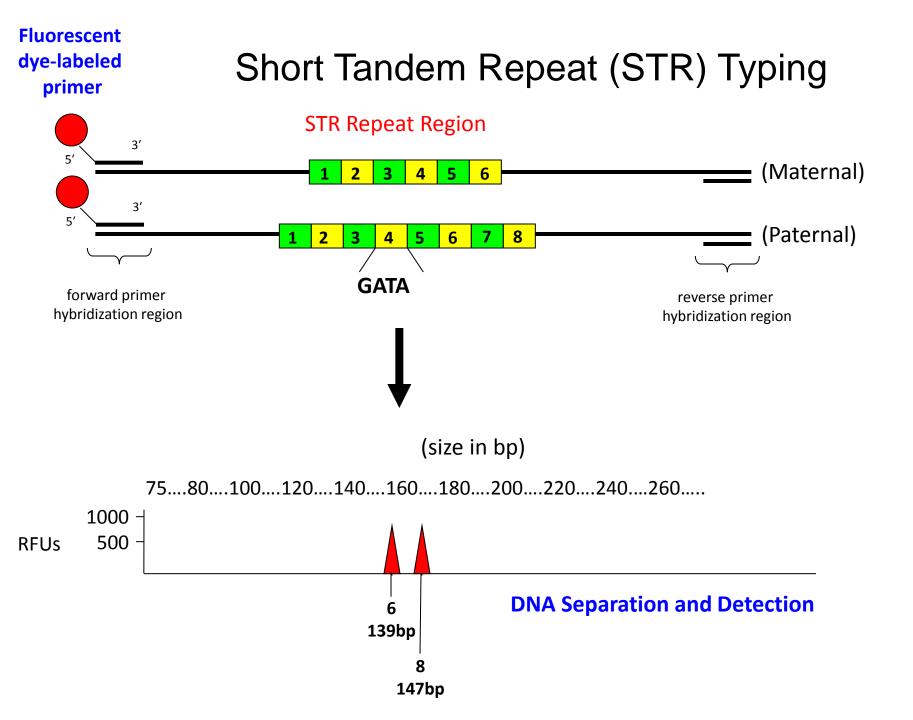
Forensic DNA Research Programs

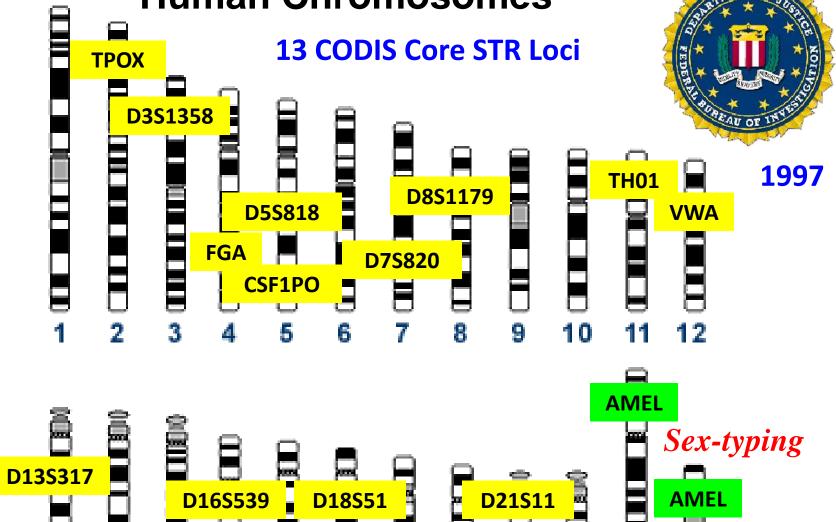
Concordance Studies miniSTRs and the 26plex

Short Tandem Repeat (STR) Markers

An accordion-like DNA sequence that occurs between genes

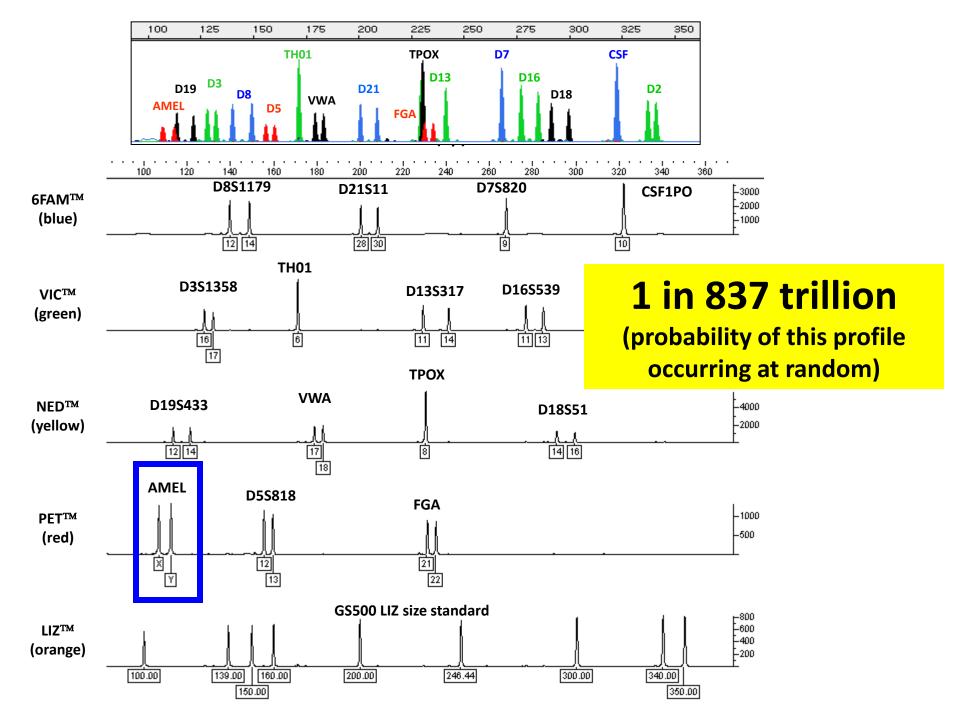
= 12 GATA repeats ("12" is all that is reported)


- → 7 repeats
- → 8 repeats ←
- → 9 repeats ←
- → 10 repeats ←
- → 11 repeats ←
- → 12 repeats ←
- → 13 repeats


Target region (short tandem repeat)

The number of consecutive repeat units can vary between people

The FBI has selected **13 core STR loci** that must be run in all DNA tests in order to provide a common currency with DNA profiles



Position of Forensic STR Markers on Human Chromosomes

х

Core STR Loci for the United States

Concordance Studies

Commercially Available STR Kits

Applied Biosystems (17)

- AmpFISTR Blue (1996)
- AmpFISTR Green I (1997)
- Profiler (1997)
- Profiler Plus (1997)
- COfiler (1998)
- SGM Plus (1999)
- Identifiler (2001)
- Profiler Plus ID (2001)
- <u>SEfiler (2002)</u>
- Yfiler (2004)
- MiniFiler (2007)
- SEfiler Plus (2007)
- Sinofiler (2008) China only
- Identifiler Direct (2009)
- NGM (2009)
- Identifiler Plus (2010)
- NGM SElect (2010)

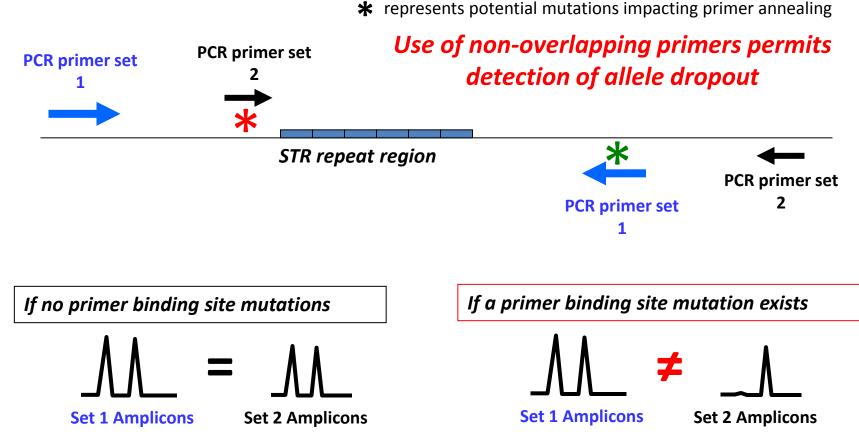
Promega Corporation (13)

- PowerPlex 1.1 (1997)
- PowerPlex 1.2 (1998)
- PowerPlex 2.1 (1999)
- **PowerPlex 16** (2000)
- PowerPlex ES (2002)
- PowerPlex Y (2003)
- PowerPlex S5 (2007)
- **PowerPlex 16 HS** (2009)
- PowerPlex ESX 16 (2009)
- PowerPlex ESX 17 (2009) •
- PowerPlex ESI 16 (2009)
- PowerPlex ESI 17 (2009)
- PowerPlex 18D (2010)

Qiagen (2010)

Primarily selling kits in Europe Due to patent restrictions cannot sell in U.S.

- ESSplex
- ESSplex SE
- Decaplex SE
- IDplex
- Nonaplex ESS
- Hexaplex ESS
- HD (Chimera)
- Argus X-12
- Argus Y-12
- DIPlex (30 indels)


~1/3 of all STR kits were released in the last year

STR Kit Concordance Testing

- Many of these STR kits have different primer sequences for amplifying the same STR locus
- Need to analyze the same DNA samples with different STR typing kits looking for differences
- In some rare cases, allele dropout (null alleles) may occur due to mutations in primer binding regions

Purpose of Concordance Studies

When different primer sets are utilized, there is a concern that allele dropout may occur due to primer binding site mutations that impact one set of primers but not another

STR Kit Concordance Testing Profiles in DNA Article Published April 2010

Article Type: Feature

Volume 13 No. 1, April 2010

Strategies for Concordance Testing

Carolyn R. Hill, Margaret C. Kline, David L. Duewer and John M. Butler National Institute of Standards and Technology, Biochemical Science Division, Gaithersburg, Maryland, USA

Concordance evaluations are important to conduct to determine if there are any allelic dropout or "null alleles" present in a data set. These studies are performed because there are a variety of commercial short tandem repeat (STR) multiplex kits with different configurations of STR markers available to the forensic community. The placement of the markers can vary between kits because the primer sequences were designed to amplify different polymerase chain reaction (PCR) product sizes. When multiple primer sets are used, there is concern that allele dropout may occur due to primer-binding-site mutations that affect one set of primers but not another.

http://www.promega.com/profiles/1301/1301_08.html

The 4 "S's" of Concordance

• NIST Standard Samples

- Run same samples with multiple kits to compare results

- Concordance Software
 - Allows comparison of data sets using NIST developed software

http://www.cstl.nist.gov/biotech/strbase/software.htm

- DNA Sequencing
 - To validate and determine the exact cause for the null allele
- STRBase website
 - To report verified null alleles and discordant results to the forensic community

http://www.cstl.nist.gov/biotech/strbase/NullAlleles.htm

NIST Sample Set (>1450 Samples)

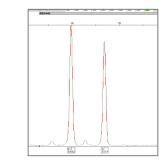
• NIST U.S. population samples

– 260 African American, 260 Caucasian, 140 Hispanic, 3 Asian

• U.S. father/son paired samples

- ~100 fathers/100 sons for each group: 200 African American, 200 Caucasian, 200 Hispanic, 200 Asian
- NIST SRM 2391b, PCR-based DNA Profiling Standard (highly characterized)
 - 10 genomic DNA samples, 2 cell line samples
 - Includes 9947A and 9948

• NIST SRM 2391c, PCR-based DNA Profiling Standard


- 4 genomic DNA (one mixture)
- 2 cell lines (903 and FTA paper)

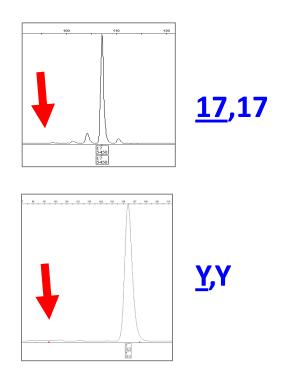
Extra (Degenerate) Primers Added with NGM SElect

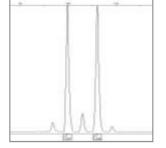
NGM (original)

<u>11,11</u>

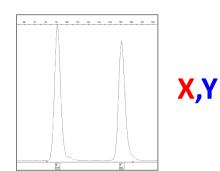
NGM SElect and NGM'

D2S441

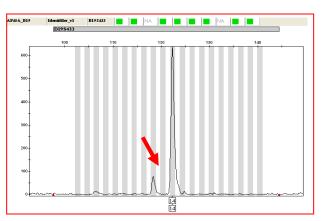

9.1 allele missing in 7 Asians



15 allele missing in 4 samples


Amelogenin

X allele missing in 3 samples



15,17

D19S433 Discordance

Identifiler & NGM = <u>14</u>,14

AF45A (Asian)

Allele 13 was missing in two different Asian samples with ABI primers = 2/2886 =

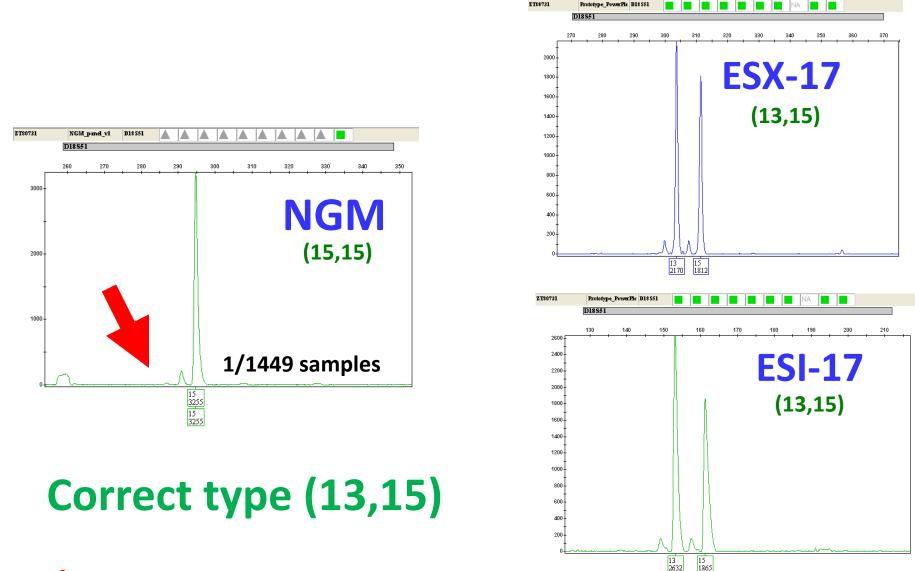
ESI 17 = 13,14

 Frequencies [for] the silent allele were determined to be

 0.0114 in 176 people from Shizuoka (Honshu) and

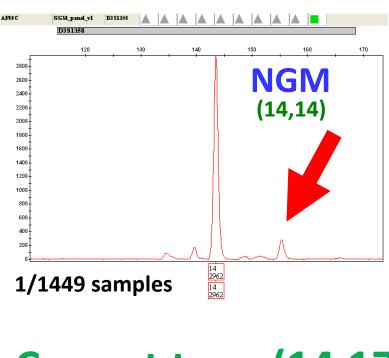
 0.0128 in 156 people from Okinawa

 Disease

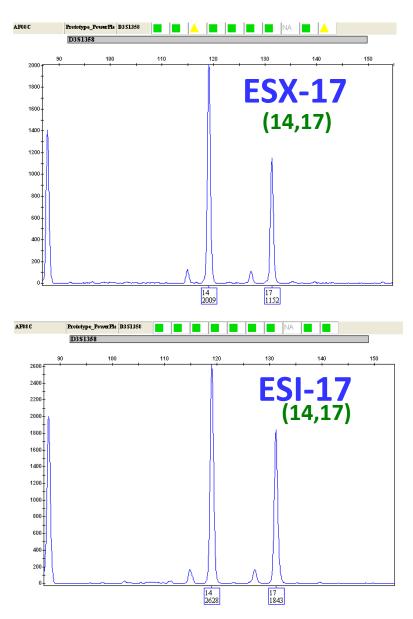

 Natsuko Mizuno,¹ D.V.M.; Tetsushi Kitayama,¹ M.Sc.; Koji Fujii,¹ Ph.D.; Hiroaki Nakahara,¹ D.V.M.; Kanako Yoshida,¹ Ph.D.; Kazumasa Sekiguchi,¹ Ph.D.; Naoto Yonezawa,² Ph.D.; Minoru Nakano,²

A D19S433 Primer Binding Site Mutation and the Frequency in Japanese of the Silent Allele It Causes

T→A SNP 8 bp downstream impacting reverse primer binding with Identifiler (and thus SGM Plus)


100

D18S51 Null Allele

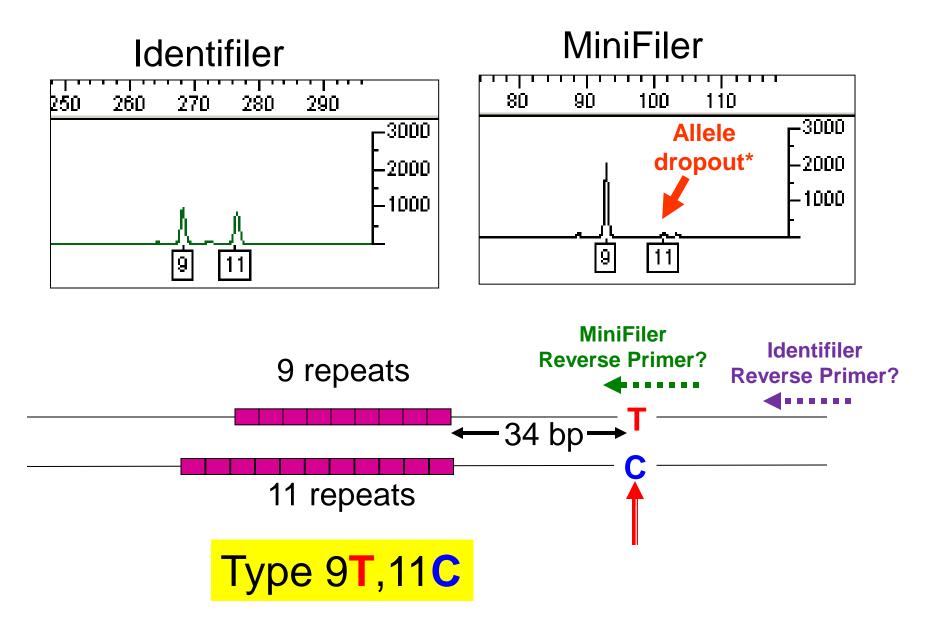

C→T SNP 172 bp downstream from repeat

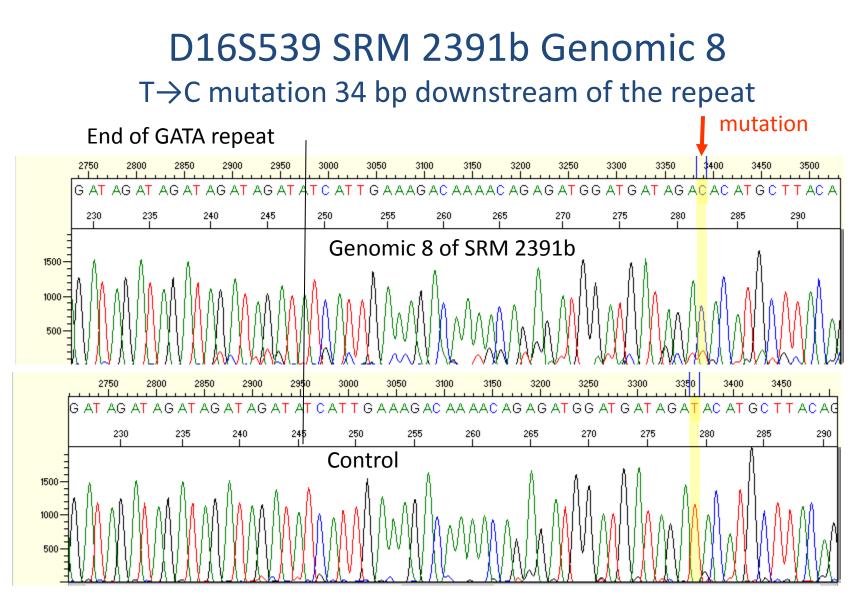
D3S1358 Null Allele

Correct type (14,17)

G → C SNP 11 bp downstream from repeat

Kits compared ID-SGM+	Samples 1424	11	15,664	- omerences	Concordance (%) 99.994
ID-3diw+	1424	10	14,150	1	99.993
ID-IDplex	1426	16	22,816	29	99.873
ID-PP16	662	14	9,268	4	99.957
ID-MiniFiler	1137	9	10,233	26	99.746
ID-NGM	1437	11	15,807	3	99.981
ID-NGMs ID-ESX17	663 1443	11	7,293	0	100.000 99.968
ID-ESI17	1443	11	15,873 15,873	4	99.968
ID-ESSplex	1443	11	15,763	28	99.822
ID-ESSplexSE	662	11	7,282	17	99.767
ID-Hexaplex	653	2	1,306	1	99.923
PP16-SGM+	651	9	5,859	1	99.983
PP16-Pro+	647	10	6,470	2	99.969
PP16-IDplex	657	14	9,198	3	99.967
PP16-MiniFiler PP16-NGM	656 657	8	5,248 5,913	14	99.733 99.949
PP16-NGMs	662	9	5,958	1	99.983
PP16-ESX17	662	9	5,958	1	99.983
PP16-ESI17	662	9	5,958	0	100.000
PP16-ESSplex	653	9	5,877	16	99.728
PP16-ESSplexSE	662	9	5,958	16	99.731
PP16-Hexaplex	653	2	1,306	1	99.923
SGM+-Pro+	1415 1424	7	9,905	0	100.000 99.968
SGM+-IDplex SGM+-MiniFiler	1424	11 6	6.822	5	99.968
SGM+-NGM	1424	11	15,664	4	99.974
SGM+-NGMs	651	11	7,161	0	100.000
SGM+-ESX17	1424	11	15,664	6	99.962
SGM+-ESI17	1424	11	15,664	5	99.968
SGM+-ESS	1424	11	15,664	5	99.968
SGM+-ESSplexSE	651	11	7,161	5	99.930
SGM+-Hexaplex	651	2	1,302	1	99.923
Pro+-IDplex	1415	10	14,150	5	99.965
Pro+-MiniFiler	1137	6	6,822	16	99.765
Pro+-NGM Pro+-NGMs	1415 647	7	9,905	4	99.960 100.000
Pro+-NGMs Pro+-ESX17	647 1415	7	4,529	0	100.000
Pro+-ESX1/ Pro+-ESI17	1415	7	9,905	4	99.960
Pro+ESS Pro+ESS	1415	7	9,905	4	99.960
Pro+-ESSplexSE	647	7	4,529	4	99.912
Pro+-Hexaplex	647	1	647	1	99.845
IDplex-MiniFiler	1137	9	10,233	48	99.531
IDplex-NGM	1426	11	15,686	30	99.809
IDplex-NGMs	657	11	7,227	17	99.765
IDplex-ESX17	1426	11	15,686	28	99.821
IDplex-ESI17 IDplex-ESS	1426 1426	11	15,686	27	99.828
	1426 657	11	15,686	1	99.994 99.986
IDplex-ESSplexSE IDplex-Hexaplex	653	2	1,306	1	99.986
MiniFiler-NGM	1137	6	6,822	13	99.923
MiniFiler-NGMs	656	6	3,936	10	99.746
MiniFiler-ESX17	1137	6	6,822	10	99.853
MiniFiler-ESI17	1137	6	6,822	9	99.868
MiniFiler-ESS	1137	6	6,822	35	99.487
MiniFiler-ESSplexSE	656	6	3,936	35	99.111
MiniFiler-Hexaplex	653	1	653	1	99.847
NGM-NGMs	657	16	10,512	14	99.867
NGM-ESX17	1437	16	22,992	16	99.930
NGM-ESI17	1437 1433	16	22,992	18	99.922
NGM-ESS	1433	16	22,928	42	99.817 99.791
NGM-ESSplexSE NGM-Hexaplex	653	7	4,571	9	99.791
NGMs-ESX17	662	17	11.254	4	99.964
NGMs-ESI17	662	17	11.254	14	99.876
NGMs-ESS	653	16	10,448	17	99.837
NGMs-ESSplexSE	662	17	11,254	34	99.698
NGMs_Hexaplex	653	7	4,571	3	99.934
ESX17-ESI17	1443	17	24,531	19	99.923
ESX17-ESS	653	16	10,448	34	99.675
ESX17-ESSplexSE	662	17	11,254	25	99.778
ESX17-Hexaplex ESI17-ESS	657	7	4,599	6	99.870
	653 662	16 17	10,448	28 30	99.732 99.733
ESI17-ESSplexSE	662 657	17	11,254 4,599	30	99.733 99.935
ESI17-Hexaplex ESS-ESSplexSE	657	7	4,599	3	99.935
ESS-ESSpiexSE ESS-Hexaplex	653	7	4,571	3	99.934
ESSplexSE-Hexaplex	653	7	4,571	3	99.934
SE33-ESX17	1443	1	1,443	6	99.584
SE33-ESI17	1443	1	1,443	17	98.822
SE33-NGMs	663	1	663	4	99.397
SE33-ESSplexSE	662	1	662	21	96.828
ESI17p-ESX17	477	17	8,109	7	99.914
ESI17p-NGMs	477	17	8,109	2 42	99.975 99.482
ESI17p-ESSplexSE ESI17p-SE33	477 477	17	8,109 477	42	99.482 99.161
PP18D-ID	4//	1 16	800	4	99.161 99.750
PP18D-PP16	703	16	11,248	1	99.991
ESX17*/ESX17	1443	17	24531	4	99.984
ESX17*/ESI17p	477	17	8109	3	99.963
ESX17*/NGM	1437	16	22992	22	99.904
ESX17*/NGMs	663	17	11271	4	99.965
ESX17*/ESS	1433	16	22928	30	99.869
ESX17*/ESSplexSE	662	17	11254	44	99.609
ESX17*/Hexaplex 26plex/ESX17	653 1443	7	4571 4329	2	99.956 99.908
26plex/ESX17 26plex/ESI17	1443	3	4329	4	99.908
26plex/NGM	1443	3	4329	11	99.745
26plex/NGMs	663	3	1989	0	100.000
26plex/ESS	1433	3	4299	0	100.000
26plex/ESSplexSE	662	3	1986	0	100.000
26plex/Hexaplex	653	3	1959	2	99.898
26plex/ESX17*	663	3	1989	0	100.000
miniSTRs/ESX17	663	3	1989	3	99.849
miniSTRs/ESI17	663	3	1989	0	100.000
miniSTRs/NGM	657	3	1971	3	99.848
miniSTRs/NGMs	663	3	1989	0	100.000
	653	3	1959 1986	0	100.000
miniSTRs/ESS					
miniSTRs/ESSplexSE	662	3			
	662 653 663	3	1980	2	99.898


Completed Concordance Studies


	Kits compared	Samples	Loci Compared	Comparisons	# Differences	Concordance (%)
-	111	102,345	1,021	948,301	1,109	99.883

948,301 allele comparisons 1,109 total differences 99.88% concordance

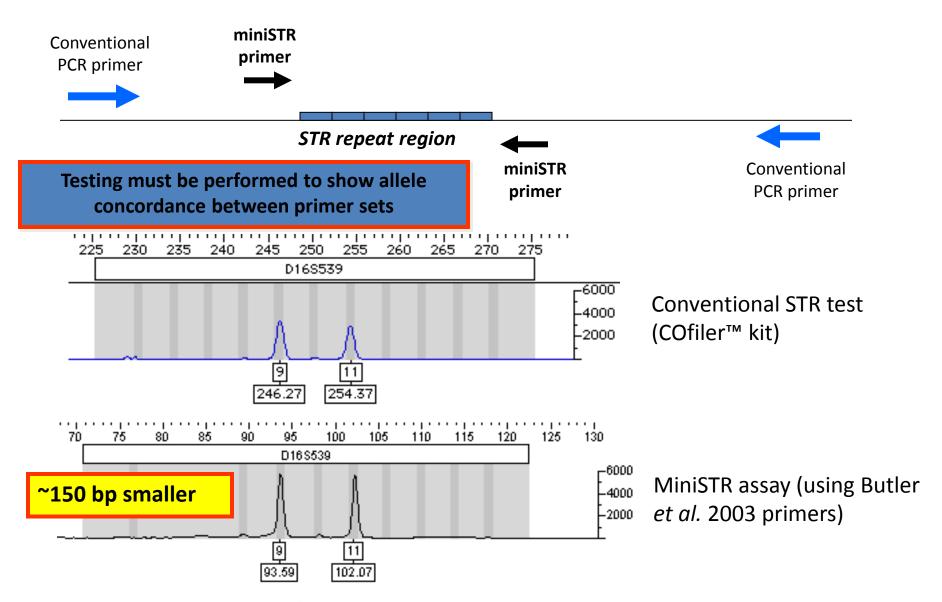
Kits (except Identifiler) were kindly provided by Promega, Qiagen and Applied Biosystems for concordance testing *performed at NIST*

SRM 2391b Genomic 8 with D16S539

Position of the T \rightarrow C probably affects the reverse primer of Minifiler and is the 3rd base found the 5'end of the Reverse PP16 primer. This could explain the imbalance of the allele seen when using PP16.

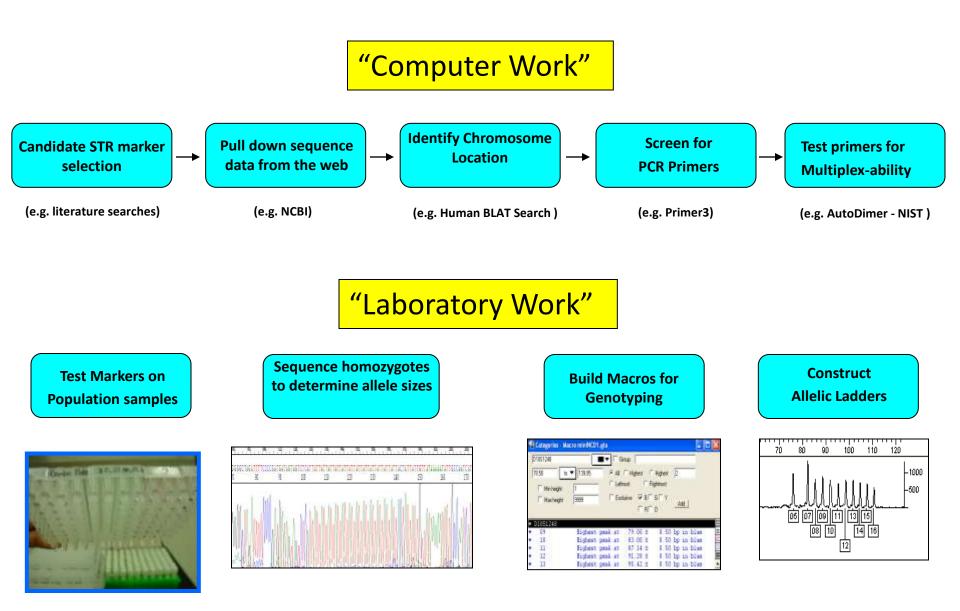
miniSTRs and the 26plex

More Loci are Useful in Situations Involving Relatives

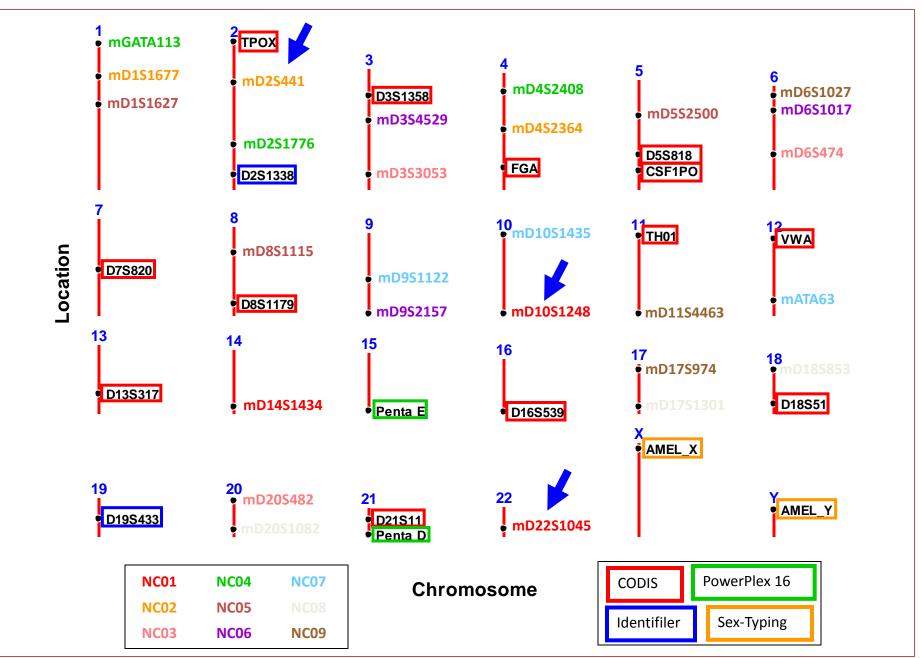

- Missing Persons and Disaster Victim Identification
 (kinship analysis)
- Immigration Testing (often limited references)
 Recommendations for 25 STR loci
- Deficient Parentage Testing
 - often needed if only one parent and child are tested

Relationship testing labs are being pushed to answer more difficult genetic questions...and we want to make sure the right tools are in place

Selection of New Autosomal Loci


- Aim to have candidate sets for optimal miniSTRs
 Obtaining additional information with degraded DNA samples
- Using ~900 STR loci with some literature data as a starting point...
 - Loci with high heterozygosities (>0.7)
 - Loci with small allele ranges (<24 bp) low mutation?</p>
 - Tetra (some tri-)nucleotide repeats without variants
 - Clean flanking regions (PCR products <140 bp)
- **26 loci** met criteria and were fully characterized...

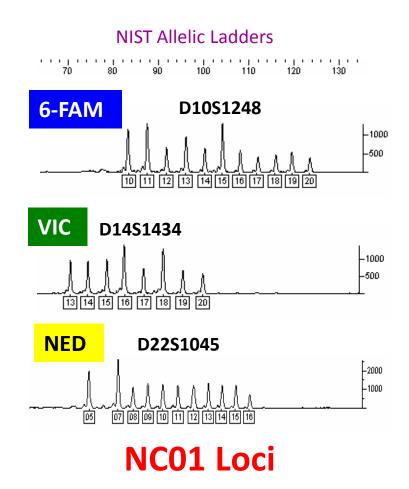
A miniSTR is a reduced size STR amplicon that enables higher recovery of information from degraded DNA samples



Butler, J.M. (2005) *Forensic DNA Typing, 2nd Edition,* Figure 7.2, ©Elsevier Science/Academic Press

Characterization of New Loci

Chromosomal Locations of New miniSTR Loci



Multiple Miniplexes

- 26 characterized loci divided into 10 miniplexes
- One locus per dye color
- Allelic ladders created
- Amplicons <140 bp
- miniSTRs
- Work with 100 pg DNA
- For degraded samples (bones in missing persons cases)

NC = Non-CODIS or non-core

See Dixon et al. (2006) Forensic Sci. Int. 164: 33-44.

NC Miniplexes

NC01	NC02	NC03	
D10S1248	D1S1677	D3S3053	
D14S1434	D2S441	D6S474	
D22S1045	26 total n	ew loci	
NC04	NC05	NC06	NC10
D1GATA113	D1S1627	D3S4529	D3S3053
D2S1776	D8S1115	D9S2157	D6S474
D4S2408	D9S324	D10S1430	D20S482
NC07	NC08	NC09	
D9S1112	D17S1301	D1052327	
D12ATA63	D18S8534	D1154463	
D14S1280	D20S1082	D175974	

Removed because they were problematic

In Jan 2008 Issue of J. Forensic Sci.

J. Forensic Sci., Jan 2008, 53(1):73-80

J Forensic Sci, January 2008, Vol. 53, No. 1 doi: 10.1111/j.1556-4029.2008.00595.x Available online at: www.blackwell-synergy.com

Carolyn R. Hill, M.S.; Margaret C. Kline, M.S.; Michael D. Coble,[†] Ph.D.; and John M. Butler, Ph.D.

Characterization of 26 MiniSTR Loci for Improved Analysis of Degraded DNA Samples

- Characterization of 26 new autosomal loci
- Primer sequences, GeneMapper bins and panels, genotypes on common samples, and allele frequency information already available on STRBase

http://www.cstl.nist.gov/div831/strbase/miniSTR.htm http://www.cstl.nist.gov/div831/strbase/newSTRs.htm

European Labs Have Adopted the NIST-Developed NC (<u>non-CODIS</u>) miniSTRs

FSI (2006) 156(2): 242-244

Short communication

The evolution of DNA databases-Recommendations

for now Europeen STD logi

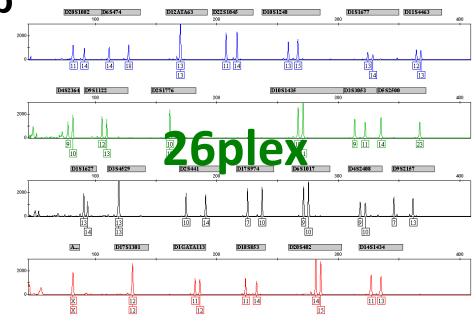
These 3 loci are included in the new European multiplex kits: Applied Biosystems NGM kits and the Promega PowerPlex ESX 16/17 and ESI 16/17 systems

² Department of Forensic Genetics, Institute of Forensic Medicine, University of Copenhagen, Denmark ^d Institute of Legal Medicine, University of Cologne, Germany

Received 25 May 2005; accepted 26 May 2005

...recommended that existing multiplexes are re-engineered to enable small amplicon detection, and that three new mini-STR loci with alleles <130 bp (D10S1248, D14S1434 and D22S1045) are adopted as universal. This will increase the number of European standard Interpol loci from 7 to 10.

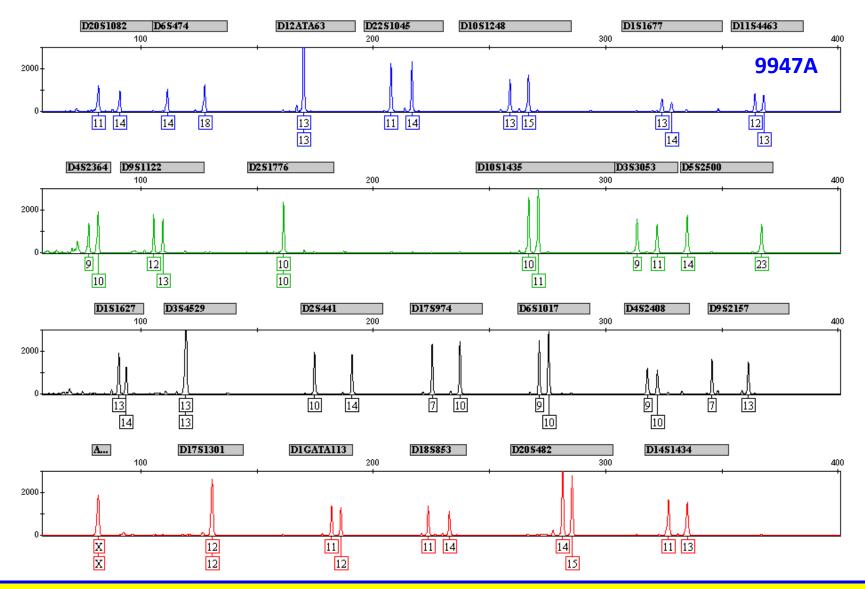
(D14 has been replaced with D2S441 from NC02)


The Design of the Multiplex

- **Goal**: A single amplification 5-dye multiplex to combine the 26 new autosomal loci + Amelogenin in one reaction (27plex)
- How can this be achieved?
 - Initial placement of all loci within 6FAM, VIC, NED, and PET dye channels (the size standard is in the LIZ channel)
 - Primer redesign for all but 7 of the original miniSTR loci
 - Trial and error of primer compatibility, as well as balancing for all working primers

26plex STR Multiplex

- So far 25 STRs and amelogenin in single multiplex (Eventual goal to have all 26 loci)
- Multiple loci in four dye channels
- Amplicons 70 to 400 bp (No longer 'miniSTRs')
- Typically use 1 ng DNA, 30 cycles
- For reference samples (a missing person's relatives)


"Autoplex" or "miniMegaplex"

All loci unlinked from core (CODIS) STRs

NIST STR 26plex

Hill et al. (2009) Journal of Forensic Sciences

Gender identification + 25 autosomal STR loci in a single amplification

In Sept 2009 Issue of J. Forensic Sci.

J. Forensic Sci., Sept 2009, 54(5):1008-1015

J Forensic Sci, September 2009, Vol. 54, No. 5 doi: 10.1111/j.1556-4029.2009.01110.x Available online at: www.blackwell-synergy.com

Carolyn R. Hill,¹ M.S.; John M. Butler,¹ Ph.D.; and Peter M. Vallone,¹ Ph.D.

A 26plex Autosomal STR Assay to Aid Human Identity Testing*[†]

- Strategies for building multiplexes
- Primer sequences and PCR conditions listed
- GeneMapper bins and panels, genotypes on common samples, and allele frequency information available on STRBase

http://www.cstl.nist.gov/biotech/strbase/str26plex.htm http://www.cstl.nist.gov/div831/strbase/newSTRs.htm

Final Thoughts and Advice

Support to the Community

...Bringing traceability and technology to the scales of justice...

- Conduct interlaboratory studies
- Perform beta-testing of new human identity testing products
- We collaborate with other NIJ grantees
- We provide input to (or have aided):
 - Scientific Working Group on DNA Analysis Methods (SWGDAM)
 - Department of Defense Quality Assurance
 Oversight Committee for DNA Analysis
 - Virginia DFS Science Advisory Committee
 - American Prosecutor's Research Institute (APRI) DNA Forensics Program "Coursein-a-Box" for training lawyers
 - WTC Kinship and Data Analysis Panel (KADAP) and Hurricane Katrina efforts
 - NIJ Expert System Testbed (NEST) Project

A Few Words of Advice

- Hard work and studying are of the utmost importance in any field and really determining where your interests lie
- Penn State is an excellent school that opens many professional doors, especially in the forensic community
- Making contacts and having professional relationships in the field is crucial to getting your foot in the door, but the rest is up to you!
- Having skills in speaking and writing is essential in this field
 - DNA analysts: writing reports and going to court
 - Research scientists: writing journal articles and giving presentations about your research

A Few Useful Websites:

- U.S. Federal Government jobs

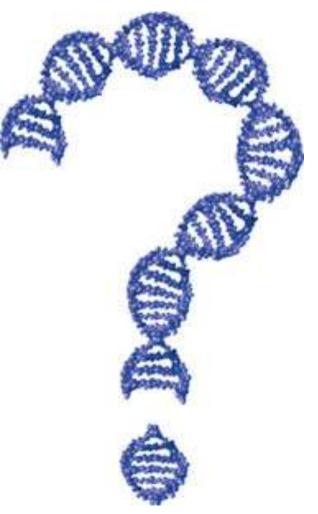
 www.usajobs.gov
- American Academy of Forensic Sciences
 - www.aafs.org

- Mid-Atlantic Association of Forensic Scientists
 - www.maafs.org

- National Institute of Justice
 - www.dna.gov

STRBase

www.cstl.nist.gov/strbase


Thank you for your attention

Acknowledgments: Applied Biosystems, Promega, and Qiagen for STR kits used in concordance studies

Contact Information

Becky Hill Research Biologist becky.hill@nist.gov 301-975-4275

http://www.cstl.nist.gov/biotech/strbase

Our team publications and presentations are available at: http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm