

NIST

Technology Administration, U.S. Department of Comme

P-33

Carolyn R. (Becky) Hill, Michael D. Coble, Margaret C. Kline, John M. Butler, Peter M. Vallone

U.S. National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8314, USA Email: becky.hill@nist.gov

The original set of 13 Combined DNA Index System (CODIS) autosomal short tandem repeat (STR) loci are currently required for upload of DNA profiles to the U.S. national DNA database. As the number of profiles continues to increase each year, the likelihood of adventitious matches becomes greater. Expanding the core loci from 13 to 20 (including DYS391) is critical to reduce the potential of these types of matches occurring within the database, to increase international compatibility for data sharing (e.g. D1S1656, D2S441, D10S1248, D12S391, D22S1045), and to increase discrimination power in missing persons and complex kinship cases. Commercial companies have recently released next-generation STR multiplex kits (PowerPlex Fusion and GlobalFiler) Express) that enable complete coverage of all of these additional loci for a total of 24 loci in each kit. These kits have been extensively tested at NIST using 3130xl and 3500 Genetic Analyzers, allowing the probability of identity calculations to be made with different sets of loci and population statistics determined with a standard set of unrelated U.S. population samples from 4 groups (n=1036). These loci have been characterized to determine the impact that this additional information will have on database searches. A variety of forensic genetic parameters have been analyzed with the NIST data set including allele frequencies, heterozygosities, peak height ratios, mutation rates, and stutter percentages.

Introduction:	Materials and Methods:	Results:
STR Loci and Multiplex Kits	NIST U.S. Population Samples	Characterization of STR Loci
Additional STR Loci and New Kits Recently, Promega and Life Technologies released new STR multiplex kits to meet the needs of the planned U.S. core loci expansion (Hares D.R. 2012). PowerPlex Fusion (Promega) and GlobalFiler (Life Technologies) large multiplex kits both amplify 24 loci in a single reaction. With the launch of these new kits coverage of the previous CODIS 13 loci as well as the additional required (D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433, and DYS391) and recommended (D22S1045) loci. PP Fusion	extensive concordance testing performed with different PCR primer sets from all available	Autosomal STR Locus Diversity with NIST 1036 Population Samples Data analysis to determine individual locus diversity for each of the 29 STR loci present in commercial kits was performed with an Excel-based software tool (STR_Genotype) developed to calculate allele and

DYS391) and recommended (DZZS1045) also includes Penta D and Penta E, whereas GlobalFiler also includes SE33 and a Y-indel. At NIST, all of the loci present in commercial STR kits have been extensively tested with our population samples to assess the value of different combinations of loci present in these kits as well as their relative variability in these U.S. population samples.

29 Autosomal STR Markers Present in Commercial STR Multiplex Kits

Locus	CODIS 13	CODIS 20	ESS 12	Other Kits
	R	equired loci		
D1S1656				
F13B				CS7
ΤΡΟΧ				
D2S441				
D2S1338				
D3S1358				
FGA				
CSF1PO				
D5S818				
F13A01				CS7
D6S1043				Sinofiler, PP21
				PPESX17, PPESI17, NGM SElect,
SE33				GlobalFiler
D7S820				
LPL				CS7
D8S1179				
Penta C				CS7
D10S1248				
TH01				
D12S391				
vWA				
D13S317				
FESFPS				CS7

Ancestry testing was performed on subsets of DNA samples with autosomal SNPs, Y-SNPs, and mtDNA sequencing to verify self-declared ancestry categorization

Related individuals were removed based on autosomal STR, Y-STR and mtDNA results

NIST 1036 U.S. Population Samples

The complete set of NIST population samples is comprised of ~1450 individuals with a subset of 1036 unrelated samples with full genotypes

• 1036 = 1032 males + 4 females

- 361 Caucasians (2 female)
- **Unrelated** samples - 342 African Americans (1 female) All known or potentially related individuals have been – 236 Hispanics

removed from the 1036 subset

- 97 Asians (1 female)
- Anonymous donors with self-identified ancestry
- **Complete profiles have been obtained with 29** autosomal STRs + PowerPlex Y23
 - Examined with multiple kits and in-house primer sets enabling concordance
- Additional DNA results available on subsets of these samples
- mtDNA control region/whole genome (AFDIL)
- SNPs (AIMs and Identity), 68 InDel markers, X-STRs (AFDIL)
- NIST assays: miniSTRs, 26plex, >100 Y-STRs, 50 Y-SNPs

genotype frequencies and heterozygosities observed from the NIST 1036 data set as well as the probability of identity values reported below.

Software programs available on STRBase: http://www.cstl.nist.gov/biotech/strbase/software.htm

Probability of Identity

• The probability of identity (P_1) , also referred to as the matching probability, is the chance that two unrelated people selected at random will have the same **genotype** (first described by George Sensabaugh in 1982). The P₁ value of a single locus is determined by summing the square of the observed genotype frequencies.

 $\sum x_i^2$ where x_i is the genotype frequency

• Lower P₁ values indicate more variability with the genetic marker in the measured population because there are more genotypes occurring at a lower frequency.

 P₁ values from independently inherited loci can be <u>multiplied together</u> to produce an expected profile P_{I}

Loci sorted on Probability of Identity (P₁) values

	Alleles	Genotypes	Het	P _I Value
Locus	Observed	Observed	(obs)	n=1036
SE33	52	304	0.9353	0.0066
Penta E	23	138	0.8996	0.0147
D2S1338	13	68	0.8793	0.0220

Penta E	PP16, PP21, PP Fusion
D16S539	
D18S51	
D19S433	
D21S11	
Penta D	PP16, PP21, PP Fusion
D22S1045	
Amelogenin	
DYS391	PP Fusion, GlobalFiler

Locus Characteristics (Example:D1S1656)

	STR Locus	Location	Repeat Motif	Allele Range*	# Alleles*	
	D2S1338	2q35	TGCC/TTCC	10 to 31	40	
	D19S433	19q12	AAGG/TAGG	5.2 to 20	36	
	Penta D	21q22.3	AAAGA	1.1 to 19	50	
	Penta E	15q26.2	AAAGA 5 to 32		53	
S	D1S1656	1q42	TAGA	8 to 20.3	25	
ean	D12S391	12p13.2	AGAT/AGAC	13 to 27.2	52	
urop	D2S441	2p14	TCTA/TCAA	8 to 17	22	
new European	D10S1248	10q26.3	GGAA	7 to 19	13	
5 ne	D22S1045	22q12.3	ATT	7 to 20	14	
	SE33	6q14	AAAG [‡]	3 to 49	178	

*Allele range and number of observed alleles from Appendix 1, J.M. Butler (2011) Advanced Topics in Forensic DNA Typing: Methodology; **SE33 alleles have complex repeat structure*

These values have been calculated for all 29 STR loci across the population samples examined

D1S1656 Allele Frequencies

	African American	Asian	Caucasian	Hispanic
Allele	(n=342)	(n=97)	(n=361)	(n=236)

Example of identifying and eliminating
related individuals

Hispanic samples ZT79994 and ZT79995

- Full 23 Y-STR match with PowerPlex Y23
- Same mtDNA control region sequences
- Out of 24 autosomal STR loci, these samples **share** a total of 22 alleles at 22 loci (only D12S391 and Penta D have non-overlapping heterozygous alleles)
- Kinship calculations
 - -LR = 0 for parent-child
 - LR = 56,300 for full-siblings (brothers)
 - -LR = 5,690 for half-siblings (or uncle-nephew, grandfather-grandson)
 - -LR = 264 for first cousins

Decision: Remove ZT79995 from final data set

– ZT79994 represents this individual's family in NIST 1036

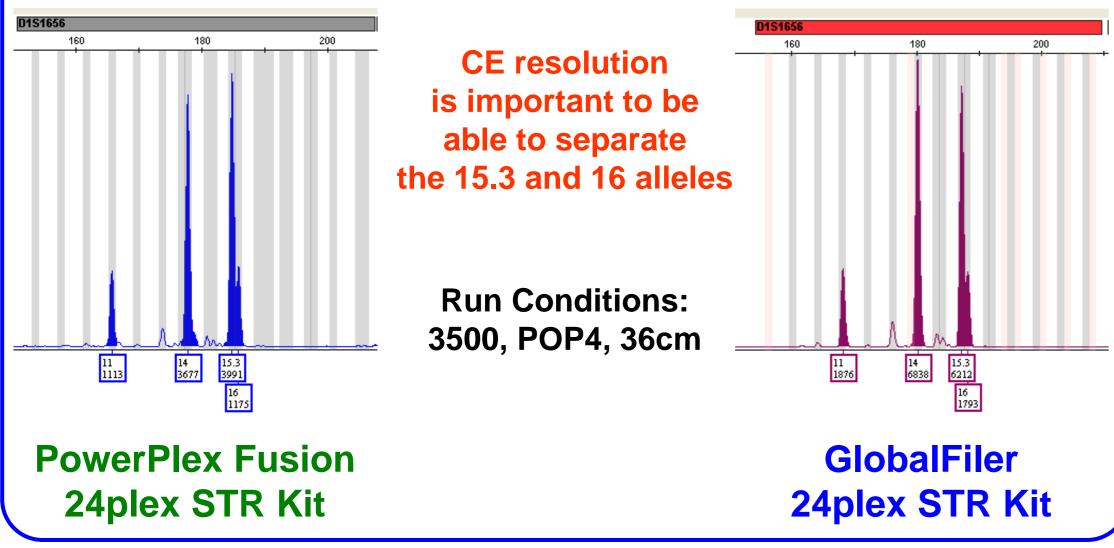
NIST U.S. Population Data Summary

• The data from our 1036 U.S. population samples is currently available on STRBase:

http://www.cstl.nist.gov/biotech/strbase/NISTpop.htm

- A summary of the NIST 1036 data set has been published in Profiles in DNA for autosomal and Y-STR loci Profiles in DNR
- **D1S1656** 93 0.8890 0.0224 15 D18S51 93 0.8687 22 0.0258 0.8813 D12S391 24 113 0.0271 FGA 27 96 0.8745 0.0308 **D6S1043** 27 0.8494 0.0321 109 Penta D 16 74 0.8552 0.0382 D21S11 27 86 0.8330 0.0403 D8S1179 11 46 0.7992 0.0558 **D19S433** 16 78 0.8118 0.0559 vWA 39 0.8060 0.0611 11 16 56 **F13A01** 0.7809 0.0678 32 **D7S820** 11 0.7944 0.0726 D16S539 28 0.7761 0.0749 9 D13S317 29 0.7674 0.0765 8 0.7471 **TH01** 8 24 0.0766 12 49 0.7732 Penta C 0.0769 **D2S441** 43 15 0.7828 0.0841 **D10S1248** 12 39 0.7819 0.0845 D3S1358 30 0.7519 11 0.0915 0.7606 D22S1045 11 44 0.0921 **F13B** 20 0.6911 7 0.0973 CSF1PO 9 31 0.7558 0.1054 **D5S818** 0.7297 0.1104 9 34 **FESFPS** 36 0.7230 12 0.1128 LPL 27 0.7027 9 0.1336 **TPOX** 9 28 0.6902 0.1358

The CODIS 13 core STR loci are in black and additional loci are highlighted in blue


STR Loci Diversity

SE33 is the most variable locus with the highest Het_{obs} (0.9353) and lowest P₁ value (0.0066).

ð	1	0	0.0146	0.0000	0.0028	0.0064
	1	1	0.0453	0.0309	0.0776	0.0275
	1:	2	0.0643	0.0464	0.1163	0.0890
×	1:	3	0.1009	0.1340	0.0665	0.1144
P	14	4	0.2573	0.0619	0.0789	0.1165
Š	14	.3	0.0073	0.0000	0.0028	0.0042
observed	1:	5	0.1579	0.2784	0.1496	0.1377
alleles	15	.3	0.0292	0.0000	0.0582	0.0508
	1	6	0.1096	0.2010	0.1357	0.1758
Ð	16	.3	0.1023	0.0155	0.0609	0.0508
	1	7	0.0278	0.0722	0.0471	0.0424
	17	.3	0.0497	0.0876	0.1330	0.1483
15	13	8	0.0029	0.0155	0.0055	0.0064
	18	.3	0.0234	0.0515	0.0499	0.0254
	19	.3	0.0073	0.0052	0.0152	0.0042

The highest allele frequency for each population is in **bold** print

D1S1656 Mixture Profiles: 1:3 ratio, FTA spots

- The NIST U.S. population data is now included in PopStats within CODIS (COmbined DNA Index System)
- Population data announcements have been published in FSI: Genetics for
 - 29 autosomal STR loci (*Hill et al.*)
 - 23 Y-STR loci (*Coble et al.*)

ensic Science International: Genetics 7 (2013) e82-e83

Letter to the Editor

U.S. population data for 29 autosomal STR loci

run and population statistics were confirmed using the Power-Marker v3.25 statistics program [10].

Conclusions and Summary

- Additional STR loci are important as DNA databases grow larger each year: the power of discrimination increases as new loci are added
 - Adding seven new loci (CODIS 13 vs CODIS 20) increases random match probability (RMP) by approximately 8 orders of magnitude
 - Commercial companies have released larger STR multiplex kits to meet the needs of the forensic community
 - GlobalFiler (Life Technologies) 24plex (including SE33 and Yindel) gives ~12 orders of magnitude improvement
- PowerPlex Fusion (Promega) 24plex (including Penta D and E) gives ~13 orders of magnitude improvement
- NIST has a set of 1036 unrelated U.S. population samples that have been used to fully characterize 29 autosomal STR loci available in commercial STR multiplex kits

- SE33 exhibited the greatest number of alleles and genotypes (twice as many compared to the next highest ranked locus Penta E).
- TPOX is the least variable locus with the lowest Het_{obs} (0.6902) and highest P₁ value (0.1358).
- Two of the new CODIS loci (D2S1338 and D1S1656) rank higher than the highest ranked CODIS 13 marker (D18S51).

Probability of Identity Loci Combinations (assuming locus independence)

STR Kit or Core Set of Loci	Total N=1036	Caucasians (n=361)	African Am. (n=342)	Hispanics (n=236)	Asians (n=97)	5
CODIS 13	5.02E-16	2.97E-15	1.14E-15	1.36E-15	1.71E-14	
Identifiler	6.18E-19	6.87E-18	1.04E-18	2.73E-18	5.31E-17	oven
PowerPlex 16	2.82E-19	4.24E-18	6.09E-19	1.26E-18	2.55E-17	en
PowerPlex 18D	3.47E-22	9.82E-21	5.60E-22	2.54E-21	7.92E-20	nent
						i i i i i i i i i i i i i i i i i i i
ESS 12	3.04E-16	9.66E-16	9.25E-16	2.60E-15	3.42E-14	
ESI 16 / ESX 16 / NGM	2.80E-20	2.20E-19	6.23E-20	4.03E-19	9.83E-18	
ESI 17 / ESX 17 / NGM SElect	1.85E-22	1.74E-21	6.71E-22	3.97E-21	1.87E-19	a a
						ַס_
CODIS 20	9.35E-24	7.32E-23	6.12E-23	8.43E-23	4.22E-21	()
GlobalFiler	7.73E-28	1.30E-26	3.20E-27	2.27E-26	1.81E-24	(n=1036)
PowerPlex Fusion	6.58E-29	2.35E-27	1.59E-28	2.12E-27	1.42E-25	
All 29 autosomal STRs	2.24E-37	7.36E-35	3.16E-37	2.93E-35	4.02E-32	
29 autoSTRs + DYS391	1.07E-37	3.26E-35	1.77E-37	1.29E-35	2.81E-32	

Funding This project was supported by an interagency agreement between NIJ and the NIST Law Enforcement Standards Office. Points of view in this document are those of the authors and do not necessarily represent the official position or policies of the US Department of Justice. Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Poster available for download from STRBase http://www.cstl.nist.gov/biotech/strbase/pub_pres/HillSFG2013poster.pdf