

Some Definitions of Low Template (LT) DNA

- Working with <100 pg genomic DNA
- Considered to be data below stochastic threshold level where PCR amplification is not as reliable (determined by each laboratory; typically 150-250 RFUs)
- Enhancing the sensitivity of detection (increasing PCR cycles, PCR product clean-up, increasing CE injection/voltage)
- Having too few copies of DNA template to ensure reliable PCR amplification (allelic or full locus drop-out)
- Can often be the minor component of mixture samples consisting of low level DNA template amounts

Outline of Topics to Discuss

- Introduction to Low Template (LT) DNA
- Technical Aspects of LT-DNA testing
- Challenges and limitations with LT-DNA testing
- Approaches to genotyping low template DNA
- LT-DNA data and Peak Height Ratios (PHR)
- Future studies with LT-DNA testing
- Summary and conclusions

Challenges of LT-DNA Testing
 Gill, P. (2001) Croatian Med. J. 42(3): 229-232

- Increased chance for contamination (want a sterile lab environment to reduce staff contamination)
- Data interpretation is more complicated (due to stochastic variation during PCR amplification):
- Heterozygote peak imbalance
- Allele drop-out
- Allele drop-in \quad LT-DNA profiles should
- Increased stutter products be interpreted with careful guidelines

Suggestions for Optimal Results with LT-DNA

- Typically at least $2-3$ PCR amplifications from the same DNA extract are performed to obtain consensus profiles
- An allele cannot be scored (considered real) unless it is present at least twice in replicate samples
- Extremely sterile environment is required for PCR setup to avoid contamination from laboratory personnel or other sources

Becky Hill AAFS 2010 presentation on low template

Experimental Design to Study LT-DNA Issues

- Pristine DNA Samples
- 2 single-source samples
- heterozygous for all loci tested (permits peak height ratio studies)
- Low DNA Template Amounts
- Dilutions made after DNA quantitation against NIST SRM 2372
- $\mathbf{1 0 0} \mathbf{~ p g}, \mathbf{3 0} \mathbf{~ p g}$, and $\mathbf{1 0} \mathbf{~ p g ~ (1 ~ n g ~ t e s t e d ~ f o r ~ c o m p a r i s o n ~ p u r p o s e s) ~}$
- Replicates
- 5 separate PCR reactions for each sample
- STR Multiplex Kits
- Identifiler Plus and PowerPlex 16 HS (half-reactions)
- Increased Cycle Number
- Identifiler Plus (29 cycles and 32 cycles; 28 for 1 ng)
- PowerPlex 16 HS (31 cycles and 34 cycles; 30 for 1 ng)

Becky Hill AAFS 2010 presentation on low template

Peak Height Ratio: Identifiler Plus, 32 cyc

Peak Height Ratio: Identifiler Plus, 32 cyc

Additional Methods of LT-DNA Testing and

 Future Studies at NIST- Signal enhancing techniques
- MinElute PCR purification kit (Qiagen) for salt removal in final product
- Increasing CE injection voltage and time
- Reduced volume PCR (concentrates amplicon)
- Degraded DNA studies
- LT-DNA mixture studies

New Section of STRBase on LT-DNA

- Recently launched webpage
- http://www.cstl.nist.gov/biotech/strbase/LTDNA.htm
- Low-template DNA = LT-DNA (not LCN!)
- The LT-DNA section includes:
- Presentations from past LT-DNA talks and workshops
- Validation data from our sensitivity studies to illustrate problems and consensus profile solution to low levels of DNA testing
- Literature listing of pertinent articles to help explain the issues involved in this topic

Becky Hill AAFS 2010 presentation on low template

Conclusions

- LT-DNA testing involves enhancing detection sensitivity usually through increasing the number of PCR cycles when amplifying DNA with conventional STR kits.
- The results with pristine full heterozygous samples demonstrate that replicate testing can produce reliable information with single source samples at low levels of DNA when consensus profiles are created.
- Identifiler Plus with 32 cycles and PowerPlex 16 HS with 34 cycles were comparable in performance with low-level DNA analysis.
- With 3 extra cycles, there was better recovery at 10 pg of DNA using both kits including less allelic and full locus drop-out. However, there is a greater potential for allele drop-in or high stutter.

Acknowledgments

NIST Funding: Interagency Agreement 2008-DN-R-121 between the Nationa nstitute of Justice and NIST Office of Law Enforcement Standards

NIST Disclaimer: Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.
Points of view are mine and do not necessarily represent the official position or policies of the US Department of Justice or the National Institute of Standards and Technology

A special thank to Applied Biosystems and Promega for providing the kits used in this study

