

Digital PCR and Quantitation

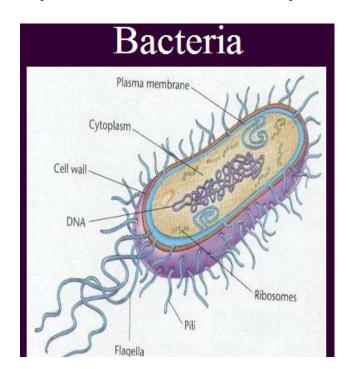
Ross Haynes

Research Biologist, Applied Genetics Group

Forensics@NIST 2012 Meeting

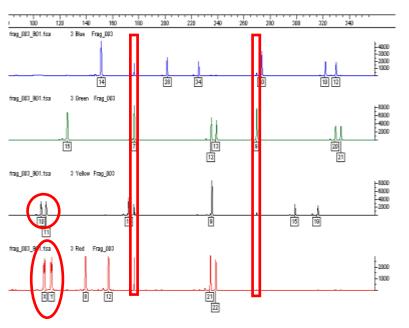
Gaithersburg, MD November 28, 2012

Agenda

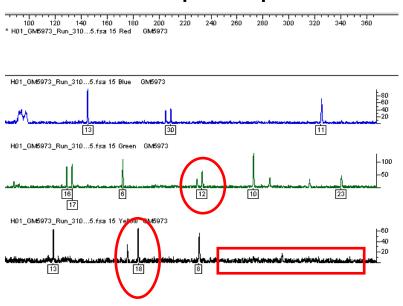

- Why quantitate with qPCR?
- How digital PCR Will Help Quantitation
- Quantitative PCR versus Digital PCR
- Digital PCR at NIST
- Instruments at NIST
- Benefits of digital PCR

Why Quantitate with qPCR

- Forensic samples often have non-human DNA
 - Forensic standards require human specific DNA quantitation
 - qPCR measures specific (e.g. human) DNA targets



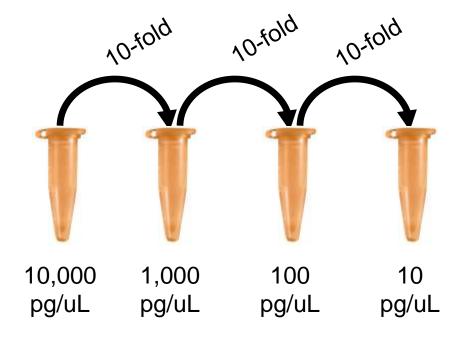
Why Quantitate with qPCR


 STR kits have a narrow working range for amount of DNA (0.5 ng to 2 ng DNA)

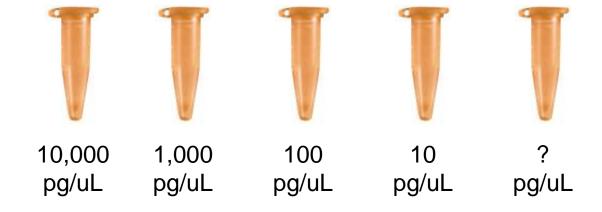
Too much DNA

→ artifacts/noise

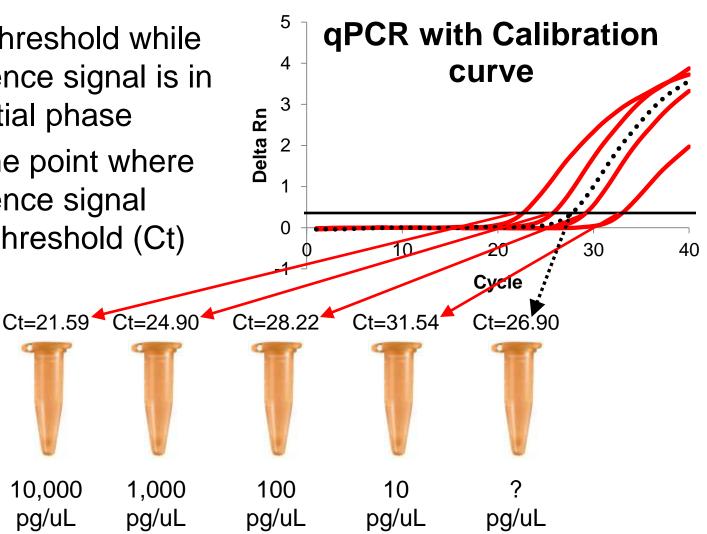
Too little DNA → incomplete profile


How dPCR Will Help Quantitation

- Predicted Major Uses of Digital PCR:
 - Quantify higher order reference materials
 - Standard Reference Materials
 - Quantify calibrant materials for qPCR
 - Manufacturers of calibrant materials
 - Quantify DNA solutions for critical and sensitive processes
 - E.g. Next Generation Sequencing


- Calibrant concentration is independently determined (e.g. UV spectrophotometer)
- Prepare a dilution curve of calibrant

- Use calibration dilutions plus samples of unknown concentration as template for qPCR
- Thermal cycle and measure fluorescence signal after each cycle of PCR


- Apply a threshold while fluorescence signal is in exponential phase
- Determine point where fluorescence signal crosses threshold (Ct)

10,000

pg/uL

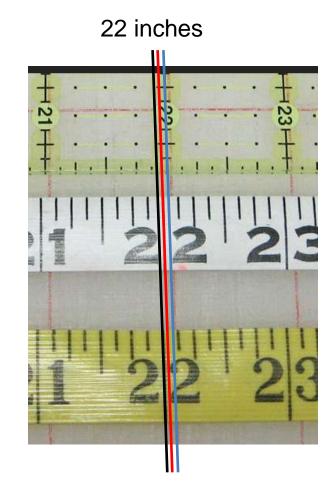
1,000

pg/uL

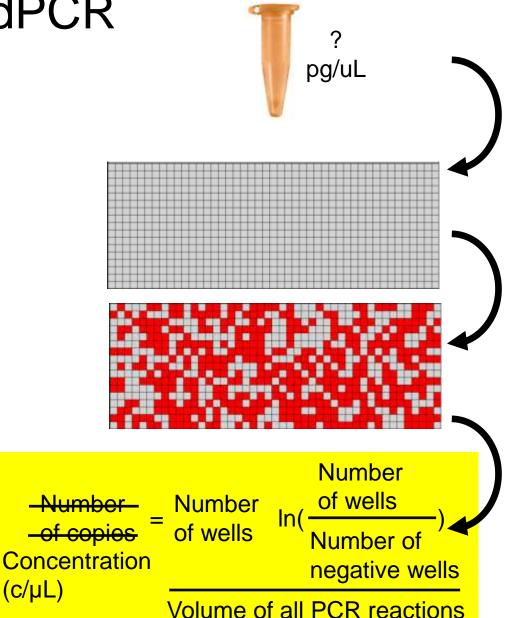
- Log transform concentration
- Plot Log(conc.) vs Ct

Calibration Curve Log(conc.) Conc. (pg/µL) 34 Ct 32 10,000 21.59 4 30 **5** 28 1,000 3 24.90 26. 100 2 28.22 20 10 31.54 26.90 251 2.40 Log(concentration) (pg/uL)

qPCR "Goldilocks Zone"


- Very high and very low concentrations do not fit on the line
- Best data obtained from the middle

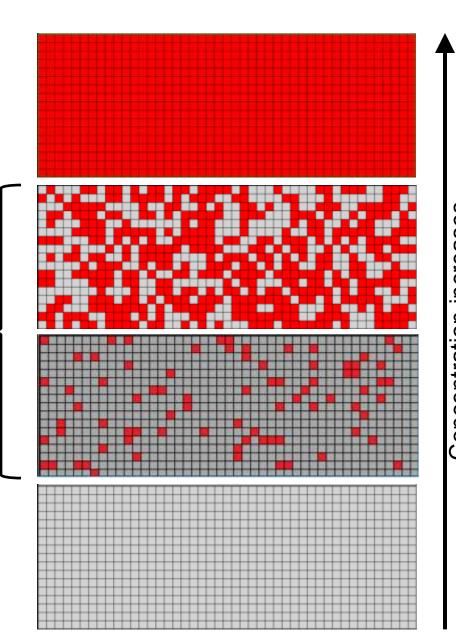
- Relative quantitation between calibrant of known concentration (aka standard) and samples of unknown concentration
 - Just as using a tape measure is a relative measurement if the calibrant is inaccurate the measurement will be inaccurate
- Spectrophotometer measures everything that absorbs at 260 nm (i.e. DNA, RNA, protein, monomers)



1) Create a PCR mastermix as if for qPCR

- 2) Aliquot across 100s or 1000s of wells
- 3) Thermal cycle as if for qPCR & count wells with detectible amplification at any cycle
- 4) Use Poisson statistics to determine concentration of starting material

(c/µL)



Range of Concentrations

Saturated
 Every well has at least one copy

Binary detection _
 Calculate concentration

No amplification
 < 1 copy/total volume

dPCR

- Absolute quantitation of target sequence
- Relies on PCR amplification
 - Only detects specific target DNA or RNA
 - Will not detect proteins or monomers
 - Will not detect fragmented or degraded DNA molecules
 - Affected by PCR inhibitors

Comparison

Quantitative PCR	Digital PCR
Quant of unknown is based on amplifiable DNA	
Quant is based on a previously characterized material (a.k.a "calibrant")	Quant is based on Poisson sampling statistics (i.e. calibrant free)
Samples must be bracketed by calibrant dilution curve	Samples must be within "digital" range
Older technology Widely accepted	New technology Gaining acceptance
Currently less expensive	Currently more expensive

dPCR at NIST

- Digital PCR has been used at NIST:
 - To certify the concentration of a Standard Reference Material for <u>Cytomegalovirus</u> SRM 2366
- Evaluated using dPCR to measure the concentration of the <u>SRM 2372</u>: Human DNA Quantitation Standard
 - Further validation of targets required



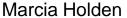
Instruments at NIST

- Fluidigm BioMark
 - Array based PCR reactions
 - Gathers real-time data
 - Better for validation of PCR conditions
- Bio-Rad QX100
 - Emulsion based PCR reactions
 - End-point data
 - Less expensive
 - Better statistics

Benefits of dPCR

Digital PCR:

- Is a PCR based quantitation method
 - Specificity of DNA target
- Uses Poisson counting statistics to determine number of molecules of DNA
 - Does not require a calibrant
 - Primarily a counting method with statistics to compensate for PCR reactions that had more than one template molecule
- Used to characterize higher order reference materials and qPCR calibrants
 - Standard Reference Materials
 - Commercial qPCR calibrants



Acknowledgments

Applied Genetics Group: Clinical Team

Margaret Kline

Ross Haynes

Contact Info: ross.haynes@nist.gov 301-975-4469

<u>NIST Disclaimer</u>: Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Points of view are those of the presenters and do not necessarily represent the official position of the National Institute of Standards and Technology or the U.S. Department of Justice.