Disclaimer

Points of view in this document are those of the authors and do not necessarily represent the official position or policies of the U.S. Department of Commerce. Certain commercial equipment, instruments, and materials are identified in order to specify experimental procedures as completely as possible In no case does such identification imply a recommendation or endorsement by NIST, nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose

Forensic STR Sequence Diversity

Forensic STR Sequence Diversity

Sequence-Based Heterozygote: A locus that appears homozygous in lengthbased measurements (such as CE), but is heterozygous by sequence

Forensic STR Sequence Diversity

Forensic STR Sequence Diversity

The role of bioinformatics
This is one page of sequence data

The lowest coverage sample has 2,838 pages

All loci and F/R strands are mixed together

Forensic STR Sequence Diversity

CE Concordance Check Results:
24 loci $\times 183$ samples $=4392$ loci evaluated
ExactID and STRait Razor
> 99\% concordance with CE data

	Discordant Loci in CE compare			
	Exact ID Only	ExactID+ STRait Razor	STRait Razor Only	
D13S317		5		
D7S820		1		
Penta D	15			
D18S51	3			
$D 19 S 433$		1	2	
D12S391			3	

Forensic STR Sequence Diversity

Forensic STR Sequence Diversity

\leftarrow Repeat Region NGS Recognition Region
4 bp Deletion
CE Primer Binding Site \rightarrow TATC: TATC: TATC: AATCAATCATCTATCTATCTTTCTGTC TTTTTGGGCTGCCTATGGCTCAA

Flanking region InDel: Bioinformatic pipelines may reduce the region used for genotyping, resulting in deletions not being "counted" as they would via CE

Forensic STR Sequence Diversity

Forensic STR Sequence Diversity

8 alleles by length $\rightarrow 10$ alleles by sequence
$\mathrm{N}=183$

Forensic STR Sequence Diversity

Forensic STR Sequence Diversity

Forensic STR Sequence Diversity

Heterozygosity

\# heterozygotes observed
\# of loci tested

Indicates genetic variability at a locus

Forensic STR Sequence Diversity

Forensic STR Sequence Nomenclature

Options for representing sequence data, and possible applications:

1. Complete Sequence String entire string of generated sequence

 AACATTTAATTACCAATATTTGGTGCAATTCTGTC
2. Bracketed sequence

- repetitive elements enclosed in brackets and a numeric representation of the repeat length

$$
[\mathrm{AATG}]_{6} \mathrm{~A}-\mathrm{TG}[\mathrm{AATG}]_{3}=\mathrm{TH} 019.3 \text { allele }
$$

- polymorphisms (SNPs or InDels) in flanking regions identified by "rs" number

3. Unique Identifier

- 13d rs206432C where 13 = repeat length, $\mathrm{d}=$ sequence version, rs number $=$ flank polymorphism
- @j*5 = computer-generated code applied to each unique sequence string within a defined region

Forensic STR Sequence Nomenclature
Reporting/Manual Comparisons
. Meaningful unique identifier (e.g. 13d) may be helpful for quick comparisons
. Bracketed sequence is intuitive and may help in explaining results to investigator
. Complete sequence could be appended to report
Database Searching
. Database searching must be unambigous and computationally inexpensive (i.e. fast)
. Two most likely possibilities are unique identifier and complete sequence string

