

ABSTRACT

NĽ

■ > NATIONAL IN STANDARDS U.S. DEPARTMI

NĽ

AL INSTITUTE OF RDS AND TECH

NĽ

NATIONAL STANDARDS U.S. DEPARTM

Nľ

AL INSTITUTE

N

NĽ

NATIONAL STANDARD U.S. DEPART

Nľ

AL INSTITUTE ARDS AND TEC ARTMENT OF CO

NATIONAL IN STANDARDS U.S. DEPARTME

Nľ

AL INSTITUTE ARDS AND TEC ARTMENT OF CO

N

AL INSTITUTE OR RDS AND TECH RTMENT OF COM

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

NIST

Precision ID GlobalFiler NGS STR Panel v2 A P P L I E D GENETTCS sequencing data from four U.S. populations

ATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY
US DEPARTMENT OF COMMERCE

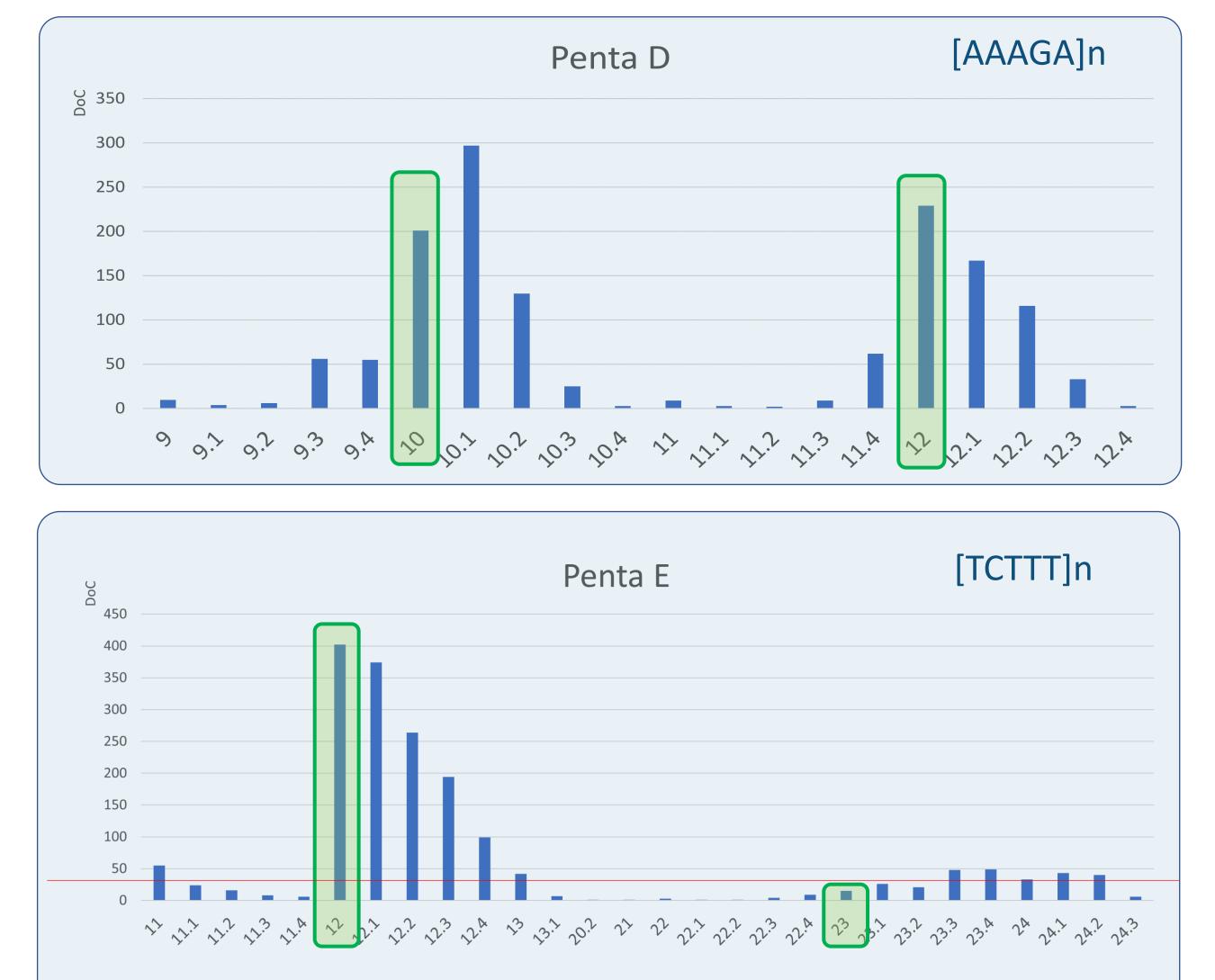
Data analysis options for genotyping the

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

> NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

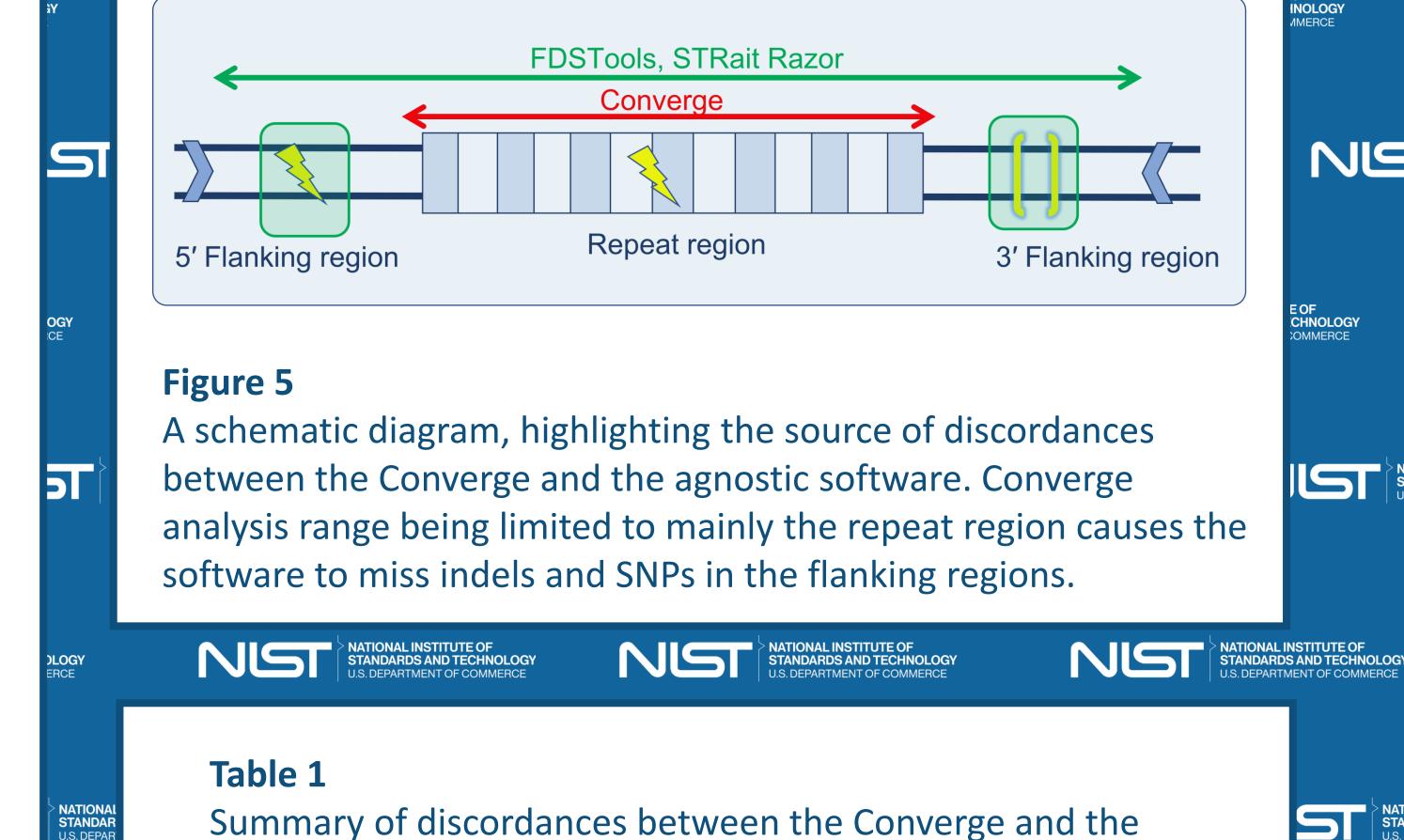
(1) National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8314, USA; (2) Thermo Fisher Scientific, 6065 Sunol Blvd., Pleasanton, CA 94556, USA

STA U.S.



ATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY
US DEPARTMENT OF COMMERCE

STANDARDS AND TECHNOLOGY

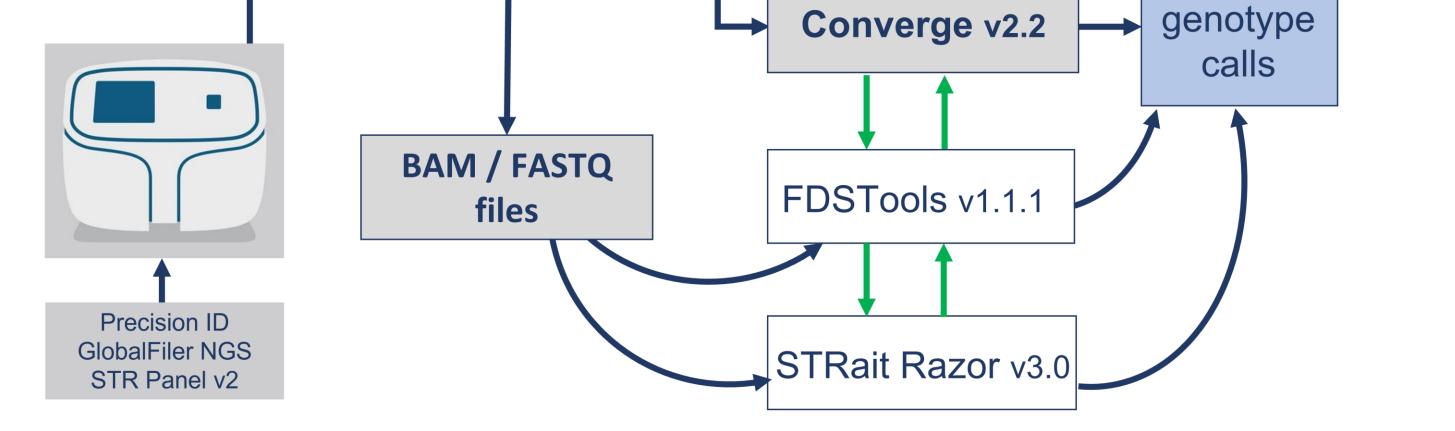

The Precision ID GlobalFiler[™] NGS STR Panel v2 (Thermo Fisher, Waltham, MA) amplifies 35 forensic markers including 31 autosomal STRs, a Y-STR and three other sex determining markers in a multiplex designed for massively parallel sequencing (MPS) applications. Here, the generated data for 519 samples across the main four U.S. populations [1] are processed through three different data analysis options following initial data acquisition via the Ion Torrent Suite. The default Applied Biosystems[™] Converge software output is compared to two agnostic academic software analyses (FDSTools v1.1.1 and STRait Razor v3.0). The concordance is reported here across the different data analysis options, highlights are provided for the observed discrepancies, imbalances and locus specific artifacts related to the Precision ID GlobalFiler[™] NGS STR Panel v2 sequencing panel detected in this sample set, and characteristics in data reported as observed by the individual tools.

Sequencing forensic markers on the Ion S5 platform generates its own NĽ artifact profile beyond the expected structure-derived stutter products and the occasional PCR or sequencing errors. The method generates sequence reads by processing changes in voltage levels due to the measurable pH change with the incorporation of nucleotides. This method is however prone to *homopolymer errors*, i.e. when the nucleotide pattern is monotonous, the accuracy of the detection of the number of individual nucleotides in a homopolymer chain is decreased. Due to the repetitive structure of the STRs this effect is excessive in markers like Penta D, Penta E or FGA, where it can impair accurate genotyping of these loci.

Different sequence analysis methods may use distinct ranges [5] of the sequence string targeted and depending on the placement of the recognition sequences [6] may interpret the same biological allele differently.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

STITUTE OF AND TECHNOLOG INT OF COMMERCE


STA U.S.

NL

CHNOLOGY OMMERCE

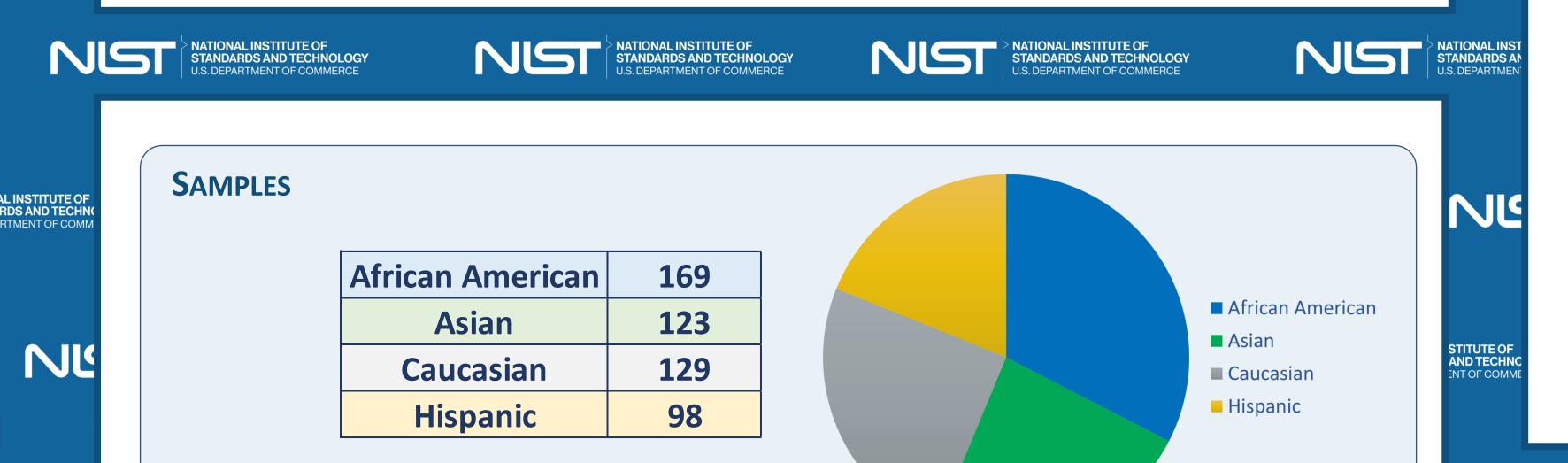
ISTITUTE OF AND TECHNOLOGY ENT OF COMMERCE

> NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY US DEPARTMENT OF COMMERCE

Torrent Server

CE

GlobalFiler PCR


Amplification Kit

Final

Figure 1

COMPARATIVE DATA ANALYSIS

Schematic representation of the data analysis used for the Precision ID GlobalFiler[™] NGS STR Panel v2 data. Parallel analyses to the Converge Forensic Analysis Software (Thermo Fisher) are the agnostic software FDSTools [2] and STRait Razor[3].

Figure 4

Representative examples of disproportionate amount of reads with homopolymer errors affecting the success of genotyping with either analysis method. The true genotypes are marked with green boxes, main repeat structure is noted in the upper right corner of each example. In these examples multiple alleles are observed with only a single nucleotide (0.1) difference. In the first example the highest allele detected (10.1) is an artifact, while the true alleles (10 and 12) are heavily masked by a range of such artifacts.

In the second example only one true allele is detected (12), with an artifact being second highest (12.1), while the true second allele (23) is obscured below the analytical threshold (red horizontal line).

		length								
	marker	CE	sequ.	Converge	Discrepancy	Alternatives	pop(n)			
		9	10	[TATC]10	4 bp deletion (3')	CE9_TATC[11]AATC[1]_+21GTCT>-	AA(2), HIS			
Ϋ́	D13S317	10	11	[TATC]11	4 bp deletion (3')	CE10_TATC[12]AATC[1]_+21GTCT>-	AA(2)			
		9	10	[TATC]10	1 bp insertion, 1 bp deletion (3')	CE9_TATC[11]_+0.1A_+4T>-	AA(1), CAU			
	D14S1434	14	12	[CTGT]3 [CTAT]9	4 bp deletion (3')	CE12_CTGT[3]CTAT[10]_+8TCCA>-	HIS(1)			
	D18551	14.2	14	[AGAA]14	2 bp indel, and flanking SNP (3')	CE14.2_AGAA[14]_+2A>G_+10.1->AG	AA(2)			
	D18221	13.2	13	[AGAA]13	2 bp indel, and flanking SNP (3')	CE13.2_AGAA[13]_+2A>G_+10.1->AG	AA(2)			
ST	D195433	15.2	16	AAGGTAGG [AAGG]14 *	2 bp deletion (5')	CE15.2_CCTT[14]CCTA[1]CCTT[1]CTTT[1]CCTT[1]	CAU(1)			
		13.2	14	AAGGTAGG [AAGG]12*	2 bp deletion (5')	CE13.2_CCTT[12]CCTA[1]CCTT[1]CTTT[1]CCTT[1]	HIS(1)			
	D21S11	27.1	27	[TCTA]4 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 TCCATA [TCTA]9	1 bp insertion (3')	CE27.1_TCTA[4]TCTG[6]TCTA[3]TA[1]TCTA[3]TCA [1]TCTA[2]TCCATA[1]TCTA[9]_+2.1->T	AA(1)			
	D2S1776	12	10	[AGAT]10	possible 8 bp insertion outside NGS range	CE10_AGAT[10]	HIS(1)			
		14	11	[AGAT]11	possible 12 bp insertion outside NGS range	CE11_AGAT[11]	HIS(1)			
		null	8	[AGAT]8	not amplified CE allele	CE8_AGAT[8]	HIS(1)			
		null	9	[AGAT]9	not amplified CE allele	CE9_AGAT[9]	HIS(1)			
	D2S441	9.1	9	[TCTA]9	1 bp insertion in 5' flanking region,	CE9.1_TCTA[9]_0.1->A25G>A	ASI(4)			
OGY ICE	D3S4529	null	17	[ATCT]12 ATTT[ATCT]4*	possible variation impairing amplification of CE allele	CE17_AGAT[4]AAAT[1]AGAT[12]	ASI(1)			
		null	16	[ATCT]11 ATTT[ATCT]4*	possible variation impairing amplification of CE allele	CE16_AGAT[4]AAAT[1]AGAT[11]	ASI(3)			
	D5S818	null	8	[AGAT]8*	SNPs in (5', 3')	CE8_ATCT[8]4C>A_+13A>G / [ATCT]8 rs73801920-A	AA(1)			
	D6S1043	18	19	[AGAT]13 ACAT[AGAT]5*	possible 4 bp insertion outside NGS range	CE19_ATCT[5]ATGT[1]ATCT[13]	ASI(1)			
	D6S474	14.3	15	[AGAT]5 [GATA]10	3 bp indel in repeat	CE14.3_AGAT[5]GATA[9]GAT[1]	HIS(1)			
		2.2	null	null	allele not reported	CE2.2_AAAGA[5] rs1190908807	AA(36), HIS			
D		3.2	null	null	allele not reported	CE3.2_AAAGA[6] rs1190908807	AA(6), HIS			
		null	12	[TCTTT]12*	not amplified CE allele	AAAGA[12]	ASI(1)			
	Penta D	13.4	14	[TCTTT]14	1 bp deletion (3')	CE13.4_AAAGA[14]_+9A>-	AA(1)			
		9	11	[TCTTT]11	possible 10 bp deletion outside NGS range	AAAGA[11]	AA(1)			
		12	14	[TCTTT]14	possible 10 bp deletion outside NGS range	AAAGA[14]	AA(1)			
		14	15	[TCTTT]15	possible 5 bp deletion outside NGS range	AAAGA[15]	HIS(1)			
	Penta_E	19.4	20	[AAAGA]5 A[AAAGA]1 AAAA[AAAGA]13*	homopolymer artifact	allele not called	AA(1)			
		19	20	[AAAGA]5 A[AAAGA]1 AAAA[AAAGA]13*	homopolymer artifact	allele not called	AA(1)			
		null	20	[AAAGA]20*	not amplified CE allele	CE20_TCTTT[20]	AA(1)			
ERCE		17	17.2	[AAAGA]2 A[AAAGA]1 AAAGGA[AAAGA]13*	homopolymer artifact	CE17_TCTTT[13]TCCTT[1] TCTTT[3]	HIS(1)			

agnostic software in this data set.

Discordant genotype calls, not originating from homopolymer error artifacts, were observed due to differences in reporting of flanking region variation. Indels not reported in Converge affected length-equivalent allele calls. Alternative analysis did consistently report flanking region variation between the two methods. Where available, rs# were provided. The (*) marks the loci where Converge do not report on the (+) strand [7].

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Figure 2

Distribution of the analyzed samples (n=519) across four main U.S. populations.

Figure 3	CSF1P0 D10S1248 D12S391 D13S317 D16S539 D18S51 D19S433 D1S1656 D21S11 D22S1045	y used marker D2S1338 D2S441 D3S1358 D5S818 D6S1043 D7S820 D8S1179	s (23+1) FGA Penta D Penta E TH01 TPOX vWA Amelogenin	Alternate ma D12ATA63 D14S1434 D1S1677 D2S1776 D3S4529 D4S2408 D5S2800 D6S474	arkers (8+3) DYS391 SRY Y indel (rs2032678)	
----------	---	---	--	---	---	--

The targeted markers in the Precision ID GlobalFiler[™] NGS STR Panel v2 can be divided into a commonly used and an alternate set markers [4].

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

NIST NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

NIST DISCLAIMER:

Information presented does not necessarily represent the official position of the National Institute of Standards and Technology or the U.S. Department of Commerce. Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

All work has been reviewed and approved by the National Institute of Standards and Technology Research Protections Office. This study was determined to be "not human subjects research" (often referred to as research not involving human subjects) as defined in U.S. Department of Commerce Regulations, 15 CFR 27, also known as the Common Rule (45 CFR 46, Subpart A), for the Protection of Human Subjects by the NIST Human Research Protections Office and therefore not subject to oversight by the NIST Institutional Review Board.

ACKNOWLEDGEMENT

NIST NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY
US DEPARTMENT OF COMMERCE

TIH was funded by the NIST Special Programs Office (Forensic Genetics Focus Area). The authors wish to thank Thermo Fisher, Robert Lagacé, and Claus Børsting and Marie-Louise N Kampmann for the assistance with the data files.

A ATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY
U.S. DEPARTMENT OF COMMERCE

SUMMARY

NATIONA STANDAF

51

NATIONA STANDA

> NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

NISST NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Discordances of genotypes of sequencing data compared to the length-based CE detection are unavoidable due to possibly different primer placement between kits. A novel source of discordance, the bioinformatically derived difference in genotypes, could be detected using parallel independent analysis methods.

NIST AND A COMMERCE

REFERENCES:

NISTINAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Gettings et al. 2018. Forensic Sci. Int. Genet. 2018, 37, 106-115. Hoogenboom et al. 2017. Forensic Sci. Int. Genet. 2017, 27, 27–40. Woerner et al. 2017. Forensic Sci. Int. Genet. 2017, 30, 18–23. Gettings et al. 2017. Forensic Sci. Int. Genet. 2017, 31, 111–117. Gettings et al. 2019. Forensic Sci. Int. Genet. 2019, 43, 102165. Huszar et al. 2021. Genes, 2021, 12, 12111739

Parson et al. 2016. Forensic Sci. Int. Genet. 2016, 22, 54-63.

STANDARDS AND TECHNOLOGY

