

- Low-level DNA studies underway
- Mixture interpretation research and training materials
- Unusual STR allele characterization
- New STR loci and assays (STR 26plex, kit concordance, SNP testing)
- Training Materials
 - Workshops on mixture interpretation and CE troubleshooting
 Third edition of Forensic DNA Typing textbook (2009 & 2011)

SRM 2372: Human DNA Quantitation Standard

- Released in Oct 2007
 >225 units in use as of April 2009
- Used by more than 110 forensic laboratories worldwide
- Manuscript describing production is in press with Anal. Bioanal. Chem.
- Serves to adjust qPCR calibrants supplied by manufacturers and adjust for assay-specific bias

D1S1656 and D12S391 Results with SRM 2391b Components D12S391 D1S1656 Type Repeat motif 13 [TAGA]13[TG[5] 14 [TAGA]13[TAGG [TG]5 12 [TAGA]12[TG[5] 13 [TAGA]12[TG[5] 13 [TAGA]14[TG]5 13 [TAGA]14[TG]5 14 [TAGA]14[TG]5 15 [TAGA]14[TG]5 16 [TAGA]14[TG]5 17.3 [TAGA]14[TG]6 17.3 [TAGA]15 TAGG [TG]5 14 [TAGA]15 TAGG [TG]5 14 [TAGA]15 TAGG [TG]5 AGATJ8 (AGAC)6 AGAT [AGATJ8 (AGAC)6 AGAT [AGATJ11 [AGAC)6 AGAT [AGATJ11 [AGAC)6 AGAT [AGATJ13 [AGAC]9 [AGATJ8 [AGAC]6 AGAT **Type** 1 18 17 2 22 15 3 14 [TAGA]13 TAGG [TG]5 15 [TAGA]14 TAGG [TG]5 15 [TAGA]14 TAGG [TG]5 17.3 [TAGA]4 TAG [TAGA]12 TAGG [TG]5 11 [TAGA]4 TGA [TAGA]11 TAGG [TG]5 16.3 [TAGA]4 TGA [TAGA]11 TAGG [TG]5 [AGAT]12 [AGAC]9 [AGAT]12 [AGAC]9 [AGAT]11 [AGAC]5 AGAT [AGAT]10 [AGAC]6 AGAT [AGAT]11 [AGAC]6 AGAT 21 4 17 18 5 10.3 [TAGA]4 IGA [TAGA]11 IAGG [TG]5 11 [TAGA]11[TG]5 17 [TAGA]16 TAGG [TG]5 12 [TAGA]12[TG]5 17.3 [TAGA]4 TGA [TAGA]12 TAGG [TG]5 14 [TAGA]13 TAGG [TG]5 14 [TAGA]13 TAGG [TG]5 [AGAT]11 [AGAC]10 [AGAT]12 [AGAC]10 [AGAT]10 [AGAC]6 AGAT [AGAT]10 [AGAC]9 AGAT [AGAT]11 [AGAC]9 AGAT [AGAT]11 [AGAC]6 AGAT 6 21 22 17 20 18 7 8 16.3 [TAGA]4 TGA [TAGA]11 TAGG [TG]5 18.3 [TAGA]4 TGA [TAGA]13 TAGG [TG]5 [AGA1]11 [AGAC]6 AGA1 [AGAT]15 [AGAC]9 [AGAT]11 [AGAC]6 AGAT [AGAT]12 [AGAC]7 AGAT [AGAT]11 [AGAC]6 AGAT [AGAT]13 [AGAC]6 24 18 20 9 [TAGA]13 TAGG [TG]5 [TAGA]16 TAGG [TG]5 18 24 10

SE33 SRM 23	Sequence Data for 391b Component 3
Forward	
wikilasdaadadadadada	
	Anternative states and a states and a state of the states
Reverse 🛉	[AAAG] ₁₇
10 bp del 31 bp upstream Allel	e "14.2" : 10 bp del 31 bp upstream [AAAG] ₁₇
Forward	
	n ka da ka
halanlanlanlanlanlanlanlanlanlanlanl	แล้วและเหม่งสามประกับสามประกับสามประกับสามประสา
Allele 26.2 : [AAAG] ₉	AG $[AAAG]_{17}$, A \rightarrow G 4 bp downstream \uparrow A \rightarrow G
SE33	Genotype = 14.2, 26.2

Component #	Genotype	Sequencing Results
1	20	[AAAG] ₂₀
	30.2	[AAAG]13 AAAAAG [AAAG]16
2	23.2	[AAAG]7 AA [AAAG]16
	28.2	[AAAG] ₉ AAAAAG [AAAG] ₁₈
3	"14.2"	10 bp del 31 bp us [AAAG]17 G?A 4 bp ds
	26.2	[AAAG] ₉ AG [AAAG] ₁₇
4	"22"	[AAAG]21 AAAG ins13 bp ds
	28.2	[AAAG] ₉ AAAAAG [AAAG] ₁₈
5	14	[AAAG]14
	30.2	[AAAG]11 AAAAAG [AAAG]18
6	20	[AAAG] ₂₀
	21	Inconclusive; not completed yet
7	"13.2"	14 bp del 11 bp us [AAAG]17 G?A 4 b p ds
	20	[AAAG] ₂₀ G?A 4 b p ds
8	16	[AAAG] ₁₆
	27.2	[AAAG]12 AAAAAG [AAAG]14
9	19	[AAAG] ₁₉
	29.2	[AAAG]13 AAAAAG [AAAG]15
10	23.2	[AAAG]12 AAAAAG [AAAG]10
1	26.2	[AAAG]11 AG [AAAG]15

Potential Applications with Rapid PCR Capabilities

- Improve overall laboratory throughput
 Multiplex PCR amplification is already in many situations the longest part of the DNA analysis process (depending on DNA extraction and DNA quantitation methods)
- With increased use of robotic sample preparation and expert system data analysis, bottleneck for sample processing will shift to time for PCR amplification...
- Enable new potential DNA biometric applications (because the overall DNA analysis process is faster)
 – Permit analysis of individuals at a point of interest such as an
 - embassy, an airport, or a country border

Room Temperature Storage of Dried Bloodstains 11 year time point Jure 2008 Identifiler profiles after DNA IQ Extraction TOTOM WITH THE POINT IQ Extraction TOTOM WITH THE

Identifiler data 10 pg template DNA with 31 cycles of PCR - triplicates (areen loci) 11.13 18.24 7,9.3 12,13 14,19 12 93 93 300 150 High stutte t Consensus Profile (2 out of 3) D3S1358 (14,19) correc (7.9.3) correct TH01 D13S317 (12,13) correct D16S539 (11,13) correct D2S1338 (24,Z) partial Allele PHR imbalance Allele dropout

Ν	lixture	Case	Sumi	marie	s	
During 2007 and Mixture Interpreta summary data fr reported on 47 information is sho	early 2008 ation Comr rom 14 di 7 80 samp own below	B, Ann Gro nittee coor fferent fo ples. A pro divided by	eliminary s crime class	CA) from ne collec abs wh ummary sification	the SW0 tion of o o colled of this s: sexua	GDAM case ctively al assault,
major crime (horr samples exar reported mixt	nicide), and nined wo	d high volu ere singl re 2-pers	me (burgla e source son	and ~	r half o 75% of	of the Fall
major crime (horr samples exar reported mixt	nicide), and nined wo aures we	d high volu ere singl re 2-pers minimum s	me (burgla e source son. # of contrib	ry). Ove and ~	r half o 75% of	of the f all
major crime (horr samples exar reported mixt	hicide), and nined we tures we	d high volu ere singl re 2-pers minimum a <u>2</u>	me (burgla e source son. # of contrib	ry). Ove e and ~ outors <u>4</u>	r half o 75% of <u>>4</u>	of the f all <u>N</u>
major crime (horr samples exar reported mixt	hicide), and nined wo tures we <u>1</u> 884	d high volu ere singl re 2-pers minimum s 2 787	me (burgla e source son. # of contrib <u>3</u> 145	ry). Ove e and ~ outors <u>4</u> 11	r half o 75% of <u>>4</u> 0	of the f all <u>N</u> 1827
major crime (horr samples exar reported mixt Crime Class Sexual Assault Major Crime	nicide), and nined wo ures we <u>1</u> 884 1261	d high volu ere singl re 2-pers minimum = 2 787 519	me (burgla e source son. # of contrib <u>3</u> 145 182	ry). Ove and ~ putors <u>4</u> 11 32	r half o 75% of <u>>4</u> 0 0	of the f all <u>№</u> 1827 1994
major crime (hon samples exar reported mixt Crime Class Sexual Assault Major Crime High Volume	nicide), and nined wo ures we <u>1</u> 884 1261 344	d high volu ere singl re 2-pers minimum a 2 787 519 220	me (burgla e source son. # of contrib <u>3</u> 145 182 140	ry). Ove and ~ butors <u>4</u> 11 32 11	r half o 75% of <u>>4</u> 0 0 5	N 1827 1994 720
major crime (hon samples exar reported mixti Crime Class Sexual Assault Major Crime High Volume Total	nicide), and nined wo ures we <u>1</u> 884 1261 344 2489	d high volu ere singl re 2-pers minimum a 2 787 519 220 1526	me (burgla e source son. # of contrib <u>3</u> 145 182 140 467	ry). Ove and ~ butors <u>4</u> 11 32 11 54	r half o 75% of <u>>4</u> 0 0 5 5	N 1827 1994 720 4541

DNA biometrics.

Z

National Academies Report on Forensic Science

Released February 18, 2009

- Entitled "Strengthening Forensic Science in the United States: A Path Forward"
- 13 recommendations provided to Congress
- Recommends establishing a National Institute of Forensic Science (NIFS)
- NIST will have a role in NIFS and our group has been asked to contribute expertise regarding validation and testing of DNA systems as a model for other forensic disciplines

THE NATIONAL ACADEMIES

