The Numbers behind DNA Analysis:
How do you get 1 in a trillion from only testing a few hundred people?

John M. Butler, Ph.D.
National Institute of Standards and Technology

Lockheed Martin BEACON Lecture
Rockville, MD
August 19, 2009

| DNA Testing Requires a Reference Sample |
| :--- | :--- |
| A DNA profile by itself is |
| fairly useless because it |
| has no context... |
| DNA analysis for identity |
| only works by comparison |
| - you need a reference |
| sample |

Table 11.3 Random match probability for a 13 -locus STR profile using the U.S. Caucasian allele frequencies found in Table 11.1.							
		Allele 1	Allele 2	Allele 1 Frequency (p)	Allele 2 Frequency (q)	Formula	Expected Genotype Frequency
	D138317	11	14	033940	0.04801	2pa	0.0028
	TH01	6	6	0.23179		p^{2}	0.0637
	D18951	14	16	0.13742	0.13907	2 pq	0.0082
	D21s11	28	30	0.15894	0.27815	2 pa	0.0684
	Das1358	16	17	0.25331	0.21523	2×9	0.1000
	D5S818	12	13	0.38411	0.14073	2 pa	0.1081
	D7S920	9	9	0.17715		p^{2}	0.0314
	Des1179	12	14	0.18543	0.16556	2 pa	0.0614
	CSFIPO	10	10	0.21099		p^{2}	0.0470
	FGA	21	22	0.18543	0.21854	2 pq	0.0810
	D165539	9	11	0.11258	0.32119	2 pq	0.0723
	TPOX	8	8	0.53477		p^{2}	0.2860
	vwa	${ }^{17}$	18	0.28146	0.20083	2 pq	0.1128
	AMEL	X	Y				
	Froduct $\mathrm{ra}_{\text {de }}$						1.20×10^{-15}
	Combined frequancy						$\begin{gathered} 1 \text { in } 8.37 \times 10^{14} \\ 1 \text { in } 837 \text { trillion } \\ \hline \end{gathered}$

Generating a DNA Profile

Basis of DNA Profiling

The genome of each individual is unique (with the exception of identical twins) and is inherited from parents

Probe subsets of genetic variation in order to differentiate between individuals (statistical probabilities of a random match are used)

DNA typing must be performed efficiently and reproducibly (information must hold up in court)

Current standard DNA tests DO NOT look at genes little/no information about race, predisposal to disease, or phenotypical information (eye color, height, hair color) is obtained

Short Tandem Repeat (STR) Markers

An accordion-like DNA sequence that occurs between genes
TCCCAAGCTCTTCCTCTTCCCTAGATCAATACAGACAGAAGACA GGTGGATAGATAGATAGATAGATAGATAGATAGATAGATAGA TAGATATCATTGAAAGACAAAACAGAGATGGATGATAGATACAT GCTTACAGATGCACAC

$$
\text { = } 11 \text { GATA repeats (" } 11 \text { " is all that is reported) }
$$

DNA Marker Nomenclature

TH01

Tyrosine Hydoxylase gene, intron 01

D16S539
D: DNA
16: chromosome 16
S: single copy sequence
539: 539th locus described on chromosome 16

DNA Profile Frequency with all 13 CODIS STR loci								
	100	150	${ }^{175}$	${ }^{2} 26$	E50		${ }^{225}$	500
AmpFISTR ${ }^{\Phi}$ Identifiler ${ }^{m / 1}$ (Applied Biosystems)							CSF ili	
What would be entered into a DNA database for searching:	Locus	allele	value	allele	value	1 in	Combined	P
	D3S1358	16	0.2533	17	0.2152	9.17	9.17	
	VWA	17	0.2815	18	0.2003	8.87	81	R
	FGA	21	0.1854	22	0.2185	12.35	1005	0
21,22-	D8S1179	12	0.1854	14	0.1656	16.29	16,364	D
12,14-	D21S11	28	0.1589	30	0.2782	11.31	185,073	3
28,30-	D18S51	14	0.1374	16	0.1391	26.18	4,845,217	T
14,16-	D5S818	12	0.3841	13	0.1407	9.25	44,818,259	T
11,14-	D13S317	11	0.3394	14	0.0480	30.69	1.38×10^{9}	R
9,9-	D7S820	9	0.1772			31.85	4.38×10^{10}	U
9,11-	D16S539	9	0.1126	11	0.3212	13.8	6.05×10^{11}	L
6,6-	THO1	6	0.2318			18.62	1.13×10^{13}	E
10,10	TPOX	8	0.5348			3.50	3.94×10^{13}	
	CSF1PO	10	0.2169			21.28	8.37×10^{14}	
The Random Match Probability for this profile in the U.S. Caucasian population is $\mathbf{1}$ in 837 trillion ($\mathbf{1 0}^{12}$)								

	Determining the Frequency of Various STR Genotypes		
8.11			
cin	Summay Coun of	Summav Count of	
	为 1.2 seen 4 itines		$8=440=0.10$ $g=1400=0.025$
,			
	, 8. s seen 1 time	14 seen 2 Itmes	$14=2400.05$
(in			
,			man
		alles	

Comparison of Allele Frequencies Measured with Different Studies				
D13S317	Africa	merican	30 times more samples in the larger study yet the allele frequencies are fairly similar	
Alleles	$N=7833$	$N=258$		
7	0.0001	-		
8	0.0260	0.0330		
9	0.0218	0.0330		
10	0.0273	0.0233		
11	0.2940	0.3062		
12	0.4290	0.4244		Smaller Study
13	0.1520	0.1454		Butler et al. (2003) JFS 48(4):908-911
14	0.0486	0.0349		Larger Study
15	0.0010	-		Einum et al. (2004)
16	0.0002	-		JFS 49(6): 1381-1385
Minimum alele frequency ($5 / 2 \mathrm{~N}$)	0.0003	0.0096		

Data behind FBI PopStats Program

```
    Budowle et al. (2001) J. Forensic Sci. 46(3):453-489
Bruce Budowle,' Ph.D.; Brendan Shea,, M.S.; Stephen Niezgoda, 2 M.B.A.; and
Ranajit Chakrabory,'3 Ph.D.
CODIS STR Loci Data from 41 Sample Populations*
```

There was little evidence for departures from Hardy-Weinberg expectations (HWE) in any of the populations.

The $F_{\text {ST }}$ estimates over all thirteen STR loci are 0.0006 for African Americans, 0.0005 for Caucasians, 0.0021 for Hispanics, 0.0039 for Asians, and 0.0282 for Native Americans.

The Same 13 Locus STR Profile in Different Populations

1 in 837 trillion
1 in 0.84 quadrillion ($\mathbf{1 0}^{15}$) in U.S. Caucasian population (NIST)
1 in 2.46 quadrillion ($1 \mathbf{1 0}^{15}$) in U.S. Caucasian population (FBI)*
1 in 1.86 quadrillion ($\mathbf{1 0}^{15}$) in Canadian Caucasian population*
1 in 16.6 quadrillion ($\mathbf{1 0}^{15}$) in African American population (NIST)
1 in $\mathbf{1 7 . 6}$ quadrillion ($\mathbf{1 0}{ }^{15}$) in African American population (FBI)*
1 in 18.0 quadrillion $\left(\mathbf{1 0}^{15}\right)$ in U.S. Hispanic population (NIST)
These values are for unrelated individuals assuming no population substructure (using only p^{2} and 2 pq)

NIST study: Butler, J.M., et al. (2003) Allele frequencies for 15 autosomal STR loci on U.S Caucasian, African American, and Hispanic populations. J. Forensic Sci. 48(4):908-911. (http://www.cstl.nist.gov/biotech/strbase/NISTpop.htm)
*http://www.csfs.ca/pplus/profiler.htm

How Statistical Calculations are Made

- Generate data with set(s) of samples from desired population group(s)
- Generally only 100-150 samples are needed to obtain reliable allele frequency estimates
- Determine allele frequencies at each locus
- Count number of each allele seen
- Allele frequency information is used to estimate the rarity of a particular DNA profile
- Homozygotes (${ }^{2}$), Heterozygotes (2pq)
- Product rule used (multiply locus frequency estimates)

Applying Genetic Models and Formulas

A Three-Generation Family Pedigree with Genetic Results from a Single STR Marker (FGA)

(c)

The Second National Research Council Report (NRC II) Published in 1996

- Recommends various formulas to use to correct for inbreeding (subpopulation structure)
- Theta (θ) is a measure of the average level of co-ancestry (i.e., inbreeding)
- Usually <0.01 with normal groups
- Usually <0.03 with closed populations (e.g., Native American tribes)
"Inbreeding means mating of two persons who are more closely related than if they were chosen at random" (NRC II, p. 98).

How Are Such Large Numbers Generated with Random Match Probabilities?

- Each allele is sampled multiple times to produce a statistically stable allele frequency
- Using theoretical models from genetics, multiple loci are multiplied together to produce an estimate of the rarity of a particular DNA profile (combination of STR alleles based on individual allele frequencies)
- Remember that relatives will share genetic characteristics and thus have STR profiles that are more similar to one another than unrelated individuals
- We are not looking at every person on the planet nor are we looking at every nucleotide in the suspect's genome

Three DNA Forensic Categories Typically Faced

- Single Source: DNA profile of the evidence sample providing indications of it being of a single source origin
- Mixture of DNA: Evidence sample DNA profile suggests it being a mixture of DNA from multiple (more than one) individuals
- Kinship Determination: Evidence sample DNA profile compared with that of one or more reference profiles is to be used to determine the validity of stated biological relatedness among individuals
http://www.promega.com/geneticidproc/ussymp17proc/workshops/PromegaMixtureStats2006.pdf

The Three Possible Outcomes of Evidence Examination (Q-K Comparison)

- Exclusion (no match)

The Statistic (Determining the Weight of the Evidence) Should Be Calculated from the Evidence

Thank you for your attention...
Our team publications and presentations are available at:
http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

See also http://www.dna.gov/research/nist http://www.cstl.nist.gov/biotech/strbase john.butler@nist.gov

