

Lockheed Martin BEACON Lecture Rockville, MD August 19, 2009

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

	Allele 1	Allele 2	Allele 1 Frequency (p)	Allele 2 Frequency (q)	Formula	Expected Genotype Frequency
D138317	11	14	0.33940	0.04801	2pq	0.0326
TH01	6	6	0.23179		p ²	0.0537
D18S51	14	16	0.13742	0.13907	2pq	0.0382
D21\$11	28	30	0.15894	0.27815	2pq	0.0884
D3S1358	16	17	0.25331	0.21523	2pq	0.1090
D5S818	12	13	0.38411	0.14073	2pq	0.1081
D7S820	9	9	0.17715		p ²	0.0314
D8S1179	12	14	0.18543	0.16556	2pq	0.0614
CSF1PO	10	10	0.21689		p ²	0.0470
FGA	21	22	0.18543	0.21854	2pq	0.0810
D168539	9	11	0.11258	0.32119	2pq	0.0723
TPOX	8	8	0.53477		p ²	0.2860
VWA	17	18	0.28146	0.20033	2pq	0.1128
AMEL	х	Y				
Product rule						1.20×10^{-15}
Combined frequency						1 in 8.37 × 10 ¹⁴ 1 in 837 trillion

	DNA Profil	e Freque	ency with	all 13 C	ODIS ST	FR loci		
	100 1	26 160	176 2	00 226	260 2	276 30	0 826	360
AmpFISTR® Identifile	R.IM	1	FH01	TPOX	D7		CSF	
(Applied Biosystem	is)	D2		D	13 I I	D16	1 .	
	D19	D8 DE	VWA	21	1 1	D18	02	
What would			111	FGA		111	- I II	
be entered			<u>, aa . a</u>					
into a DNA	Locus	allele	value	allele	value	1 in	Combined	
database for	D3S1358	16	0.2533	17	0.2152	9.17	9.17	Ρ
searching:	VWA	17	0.2815	18	0.2003	8.87	81	R
16,17-	FGA	21	0.1854	22	0.2185	12.35	1005	0
21.22-	D8S1179	12	0.1854	14	0.1656	16.29	16,364	D
12,14-	D21S11	28	0.1589	30	0.2782	11.31	185,073	
28,30-	D18S51	14	0.1374	16	0.1391	26.18	4,845,217	۲.
14,16-	D5S818	12	0.3841	13	0.1407	9.25	44,818,259	1
11,14-	D13S317	11	0.3394	14	0.0480	30.69	1.38 x 10 ⁹	R
9,9-	D7S820	9	0.1772			31.85	4.38 x 10 ¹⁰	U
9,11-	D16S539	9	0.1126	11	0.3212	13.8	6.05 x 1011	L
0,0- 8 8-	THO1	6	0.2318			18.62	1.13 x 1013	E
10,10	TPOX	8	0.5348			3.50	3.94 x 10 ¹³	
	CSF1PO	10	0.2169			21.28	8.37 x 1014	
The Rar	ndom Match	Probabili is 1	ty for this in 837 t	profile in rillion (1	the U.S. (1012)	Caucasi	an populati	ion

Genotypes from 20 samples	Determin of Variou	ing the Free s STR Gen	quency otypes
11,12 8,11 11,11 <mark>11,12</mark>	Summary Count of Observed Genotypes	Summary Count of Observed Alleles	Alleles Frequencies
13,13 12,12 12,12 11,11 12,13 11,14 8,8 11,13 11,12 11,12 11,12 11,12	11,12 seen 4 times 8,11 seen 2 times 11,11 seen 3 times 13,13 seen 1 time 12,12 seen 2 times 12,13 seen 2 times 11,14 seen 1 time 8,8 seen 1 time 10,13 seen 1 time 0,11 seen 1 time	8 seen 4 times 9 seen 1 time 10 seen 1 time 11 seen 15 times 12 seen 10 times 13 seen 7 times 14 seen 2 times	$\begin{array}{l} 8 = 4/40 = 0.10 \\ 9 = 1/40 = 0.025 \\ 10 = 1/40 = 0.025 \\ 11 = 15/40 = 0.025 \\ 12 = 10/40 = 0.25 \\ 13 = 7/40 = 0.175 \\ 14 = 2/40 = 0.05 \\ \hline \ $
10,13 11,11 8,11 9,11 13,14	9,11 seen 1 time 13,14 seen 1 time 20 samp	les = 40 alleles	37.5% of the time in this sampling

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Co	omparis Ieasure	on of A
D13S317	African	American
Alleles	N = 7833	N = 258
7	0.0001	-
8	0.0260	0.0330
9	0.0218	0.0330
10	0.0273	0.0233
11	0.2940	0.3062
12	0.4290	0.4244
13	0.1520	0.1454
14	0.0486	0.0349
15	0.0010	-
16	0.0002	-
Minimum allele frequency (5/2N)	0.0003	0.0096

	Caucasian	African-American	Hispanic
Allele	N = 302	N = 258	N = 140
8	0.11258	0.03295	0.12143
9	0.07450	0.03295	0.15357
10	0.05132	0.02326	0.10000
11	0.33940	0.30620	0.23571
12	0.24834	0.42442	0.22143
13	0.12417	0.14535	0.11786
14	0.04801	0.03488	0.04643
15 5/(2x30	0.00166* 2) = 0.00828	5/(2x140	0.00357*) = 0.01786

Data behind FBI PopStats Program

Budowle et al. (2001) J. Forensic Sci. 46(3):453-489

Bruce Budowle,¹ Ph.D.; Brendan Shea,² M.S.; Stephen Niezgoda,² M.B.A.; and Ranajit Chakraborty,³ Ph.D.

CODIS STR Loci Data from 41 Sample Populations*

There was little evidence for departures from Hardy-Weinberg expectations (\mbox{HWE}) in any of the populations.

The $\rm F_{ST}$ estimates over all thirteen STR loci are 0.0006 for African Americans, 0.0005 for Caucasians, 0.0021 for Hispanics, 0.0039 for Asians, and 0.0282 for Native Americans.

STR Profile Number Locus Computed of Popula tions Used		Number of Popula- tions Used	Cumulative Profile Frequency Range (1 in)	Cumulative Profile Frequency against U.S. Caucasians (Appendix II)	
D351358	16,17	166	5.24 to 62.6	9.19	
VWA	17,18	166	37.6 to 1080	81.8	
FGA	21,22	166	737 to 119000	1010	
D851179	12,14	166	8980 to 5 430 000	16 400	
D21511	28,30	166	165 000 to 248 000 000	186 000	
D18551	14,16	166	3.85×10^4 to 2.68×10^{10}	4.88×10^{6}	
D55818	12,13	166	$2.28\times~10^3$ to 4.22×10^{11}	4.51×10 ³	
D135317	11.14	166	$4.32{\times}10^{4}$ to $1.69{\times}10^{13}$	1.38×10°	
D75820	9,9	166	$1.17{\times}10^{10}\text{to}2.98{\times}10^{16}$	4.22×10 ¹⁰	
D165539	9,11	97	4.06×10^{11} to 1.11×10^{18}	$5.82\!\times\!10^{11}$	
тнот	6,6	97	9.30×10^{12} to 1.45×10^{19}	1.05×10 ¹²	
TPOX	8,8	97	3.33×1019 to 1.54×1020	3.63×10 ¹⁰	
CSF 1PO	10,10	97	3.43×1014 to 2.65×10 ²¹	7.43×10 ¹⁴	10 ¹⁴ to 10 ²

J.M. Butler – DNA Statistics Lockheed Martin BEACON Lecture Series

How Statistical Calculations are Made

- Generate data with set(s) of samples from desired population group(s)
- Generally only 100-150 samples are needed to obtain reliable allele frequency estimates
- Determine allele frequencies at each locus
 - Count number of each allele seen
- Allele frequency information is used to estimate the rarity of a particular DNA profile
 - Homozygotes (p²), Heterozygotes (2pq)
 - Product rule used (multiply locus frequency estimates)

Applying Genetic Models and Formulas

 HWE proportions of genotype frequencies can be reached in a single generation of random mating. HWE is simply a way to relate allele frequencies to genotype frequencies.

and the second	station	radifi N	WC II secondaria	ulations for poj	valation of	abstructure adj	ustments (ove Appe	ndis 17). Son	urrise with the	rta opeal to 0.0	1 and 0.03 au	contra
form U.S.	Caucas	an (N=	302): Append	tx II - sample	in datah: Un	asa dar ANNE	NRCI INC	ommendation	4.1	NRCI Re	commendation	4.10
	A1	A2	Allele 1 freq (p)	Aliele 2 freq (q)		Calc freq		0-0.01	+-0.03		8=0.01	8-0.0
0135317	11	14	0.33940	0.04801	2pq	0.0326	2pg	0.0326	0.0326	eq. 4.10b	0.0386	0.050
TH01	6	6	0.23179	-	p²	0.0537	$p^2+p(1-p) \in$	0.0555	0.0591	eq. 4.10a	0.0628	0.062
D10551	14	16	0.13742	0.13907	2pq	0.0382	2pq	0.0382	0.0302	eg. 4.10b	0.0419	0.049
021511	28	20	0.15894	0.27015	2pq	0.0864	200	0.0884	0.0804	eg. 4,10b	0.0927	0.101
0051358	14	17	0.25331	0.21523	2pq	0.1090	299	0.1090	0.1090	4g. 4.10b	0.1129	0.120
055818	12	13	0.36411	0.14073	2pq	0.1085	2011	0.1051	0.1081	eg. 4.10b	0.1131	0.122
075620		. 9	0.17715	-	pi	0.0314	$p^2 + p(1-p) $	0.0328	0.0358	eq. 4.10a	0.0390	0.055
0051179	12	14	0.18543	0.16556	204	0.0614	201	0.0614	0.0614	eg. 4.10b	0.0654	0.073
57170	10	10	0.21689	-	pi	0.0470	$p^2 + p(1-p) \hat{n}$	0.0467	0.0521	eq. 4.10a	0.0558	0.074
GA	21	22	0.18543	0.21054	202	0.0810	201	0.0810	0.0610	eg. 4.10b	0.0051	0.093
0165539		33	0.11258	0.32119	2pq	0.0723	2pq	0.0723	0.0723	eq. 4.10b	0.0773	0.067
POX			0.53477	-	p²	0.2860	$p^2 + p(3{-}\rho) \; \theta$	0.2885	0.2934	02.4.102	0.2983	0.323
-	17	18	0.28146	0.30033	Jpg	0.1128	Jpg	0.1128	0.1128	60. 4.10D	0.1167	0.124

	alations	with a	arrations for	relatives using	the NRC I	l nonnedel	formessla.					
From U.S. ((aucast	an (N	= 302): Appi	odix II - sam	gile tri da Uni	tabase ler HM2		NRC	i Aecommenda	idon 4.4		
	AI	A2	Allule 1 freq (p)	Allele 2 freq (q)		Calc freq		F=1/4 (parent)	F= UR (half sib)	F=1/16 (1st cousin)		Full sib
D135317	11	14	0.33940	0.04801	2pq	0.0326	PQ 4.85	0.1937	0.1131	0.0729	02.4.90	0.3550
THOI	6	6	0.23179	-	19 ⁴	0.0537	eq. 4.8a	0.2318	0.1428	0.0982	00.4.94	0.3793
D165539		11	0.11258	0.32119	204	0.0723	10.4.85	0.2169	0.1446	0.1085	02.4.90	0.3765
D18551	14	16	0.13742	0.13907	200	0.0362	FG. 4.00	0.1382	0.0662	0.0632	92, 4:50	0.3287
D21511	28	30	0.15894	0.27815	2pq	0.0664	eq 4.85	0.2165	0.1535	0.1209	62.4.90	0.3834
0351358	16	17	0.25331	0.21523	2pg	0.1090	eq. 4.6b	0.2343	0.1717	0.1403	eq. 4.9b	0.3944
D55818	12	13	0.36411	0.14073	2pq	0.1001	eq. 4.0b	0.2624	0.1853	0.1457	42.4.90	0.4082
075830	9		0.17715		pi	6.0314	4q. 4.83	0.1772	0.1043	0.0678	69.4.95	0.3464
D451179	12	14	0.18543	0.16556	abd	0.0614	49.4.8b	0.1755	0.1184	0.0899	eq. 4.9b	0.3531
CSF1PO	10	50	0.21689	-	p2	8.0470	49.4.83	0.2165	0.1320	0.0895	49 4.95	0.3762
FGA	21	22	0.18543	0.21854	apq	0.0810	eq. 4.8b	0.2020	0.1415	0.1113	oq. 4.9b	0.3713
TPOX	8		0.53477		p2	0.2860	eq. 4.8a	0.5348	0.4104	0.3482	02.4.92	0.5889
VWA.	17	18	0.28146	0.20033	2pq	0.1128	1Q. 4.85	0.2409	0.1768	0.1448	49.4.90	0.3966
AND	x	v										

How Are Such Large Numbers Generated with Random Match Probabilities?

- Each allele is sampled multiple times to produce a statistically stable
 allele frequency
- Using theoretical models from genetics, multiple loci are multiplied together to produce an estimate of the rarity of a particular DNA profile (combination of STR alleles based on individual allele frequencies)
- Remember that relatives will share genetic characteristics and thus have STR profiles that are more similar to one another than unrelated individuals
- We are not looking at every person on the planet nor are we looking at every nucleotide in the suspect's genome

- **Single Source**: DNA profile of the evidence sample providing indications of it being of a single source origin
- Mixture of DNA: Evidence sample DNA profile suggests it being a mixture of DNA from multiple (more than one) individuals
- Kinship Determination: Evidence sample DNA profile compared with that of one or more reference profiles is to be used to determine the validity of stated biological relatedness among individuals

http://www.promega.com/geneticidproc/ussymp17proc/workshops/PromegaMixtureStats2006.pdf

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

