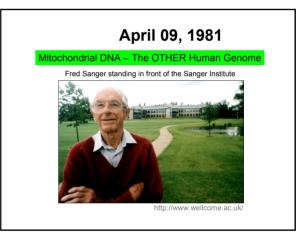
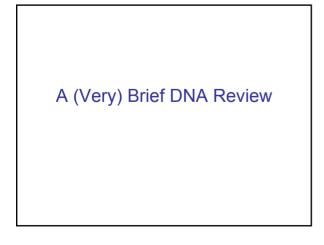
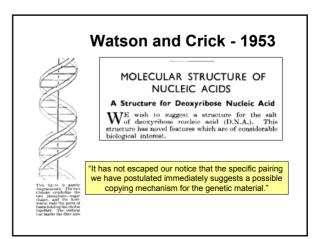
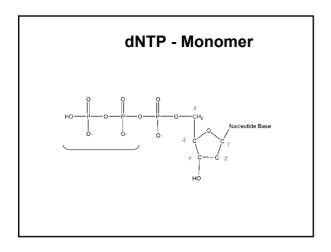
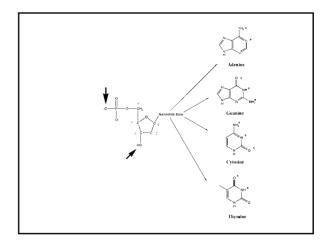
National Forensic Science Technology Center

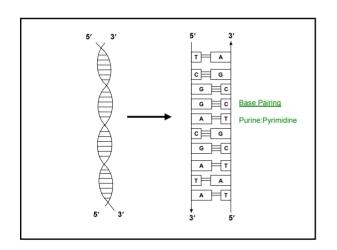

Mitochondrial DNA Workshop

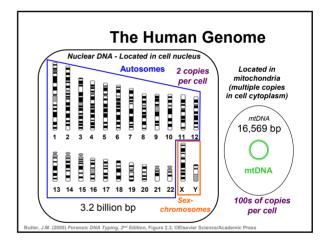

Michael D. Coble, PhD March 13-15, 2006

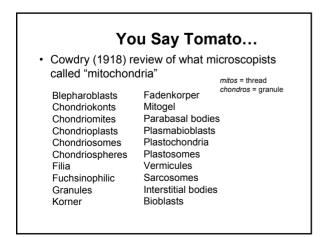

Goals and Objectives

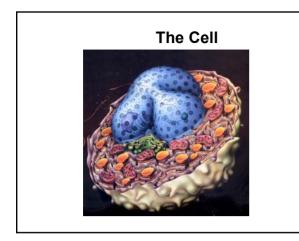

- Overview and theory behind mtDNA analysis
- The science behind mtDNA sequencing
- Forensic casework applications of mtDNA (validation and examples)
- Tools for mtDNA screening Linear Arrays
- Emerging mtDNA technologies mtDNA genome sequencing, species identification, dHPLC for resolving mixtures.
- Summary and Questions

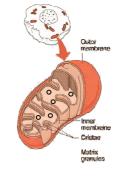




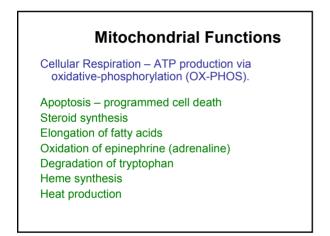


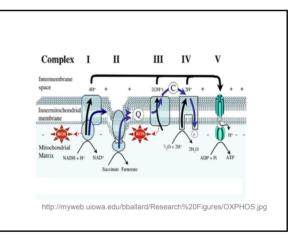


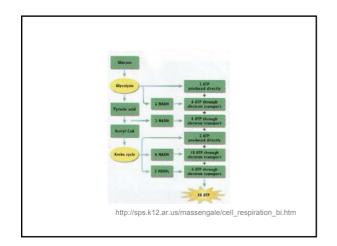


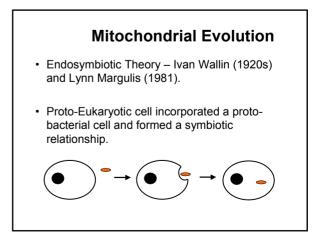


Mitochondrial Morphology

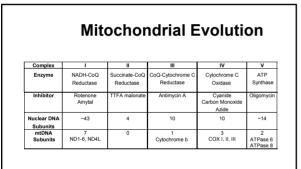

Cytoplasmic organelle


Double membrane

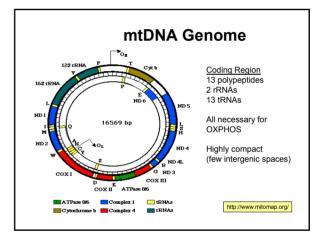

Outer membrane – porin proteins for the transportation of materials.

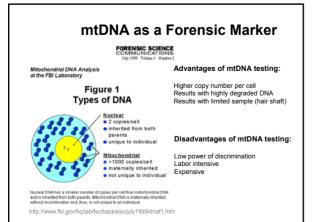

Inner membrane – highly folded (increased surface area) and highly impermeable.

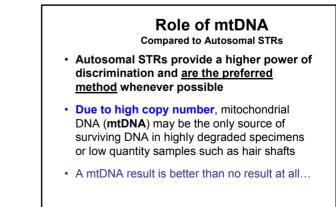
Inner Matrix - several copies of mtDNA


Support for the Endosymbiotic Theory

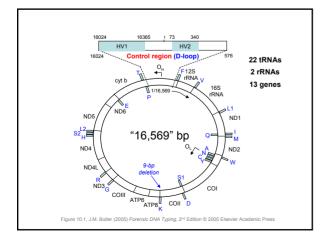
- Mitochondria have double membranes and the inner membrane is rich in cardiolipin.
- Mitochondria have their own genome, which is circular like bacteria (no histones), and use a genetic code for amino acids different that the nuclear DNA.
- New mitochondria are formed by a process similar to binary fission.
- Mitochondrial ribosomes are very similar to bacterial ribosomes (affected by antibiotics such as linezolid).

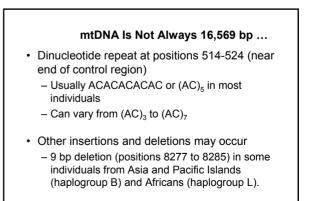

Lucky Guess or Clairvoyant?

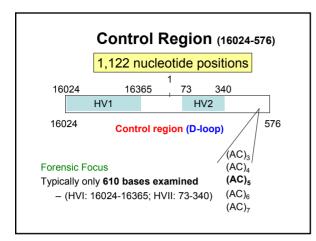

 1890 – R. Altman writes that "bioplasts" (mitochondria) are, "autonomous, elemental living units, forming bacteria-like colonies in the cytoplasm of the host cell."

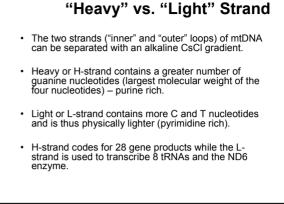

Immo Scheffler, Mitochondria (1999)

~81 subunits encoded by the nuclear genome

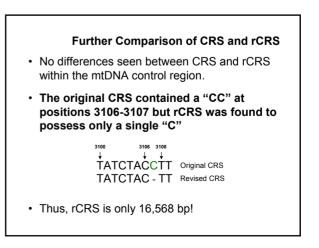



and mtDNA			
Characteristics	Nuclear DNA (nucDNA)	Mitochondrial DNA (mtDNA)	
Size of genome	~3.2 billion bp	~16 569 bp	
Copies per cell	2 (1 allele from each parent)	Can be > 1000	
Percent of total DNA content per cell	99.75%	0.25%	
Structure	Linear; packaged in chromosomes	Circular	
Inherited from	Father and Mother	Mother	
Chromosomal pairing	Diploid	Haploid	
Generational recombination	Yes	No	
Replication repair	Yes	No	
Unique	Unique to Individual (except identical twins)	Not unique to individual (same as maternal relatives)	
Mutation rate	Low	At least 5–10 times nucDNA	
Reference sequence	Described in 2001 by the Human Genome Project	Described in 1981 by Anderson and co-workers	


Lineage Markers: Y-STRs and mtDNA Advantages Disadvantages Extend possible reference Lower power of discrimination samples beyond a single due to no genetic shuffling with generation (benefits missing recombination persons cases and genetic , genealogy) Family members have indistinguishable haplotypes Family members have unless mutations have indistinguishable haplotypes occurred unless mutations have occurred

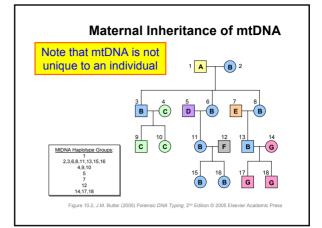

Location and Copy Number of mtDNA

- · Found within the mitochondria in the cellular cytoplasm.
- · On average 4-5 copies of mtDNA molecules per mitochondria (range of 1-15 mtDNA copies).
- · Number of mitochondria vary by cell type (e.g., muscles have more...).
- · Generally, hundreds of mitochondria per cell.


Original Reference Sequence

- Human mtDNA was first sequenced in 1981 in Frederick Sanger's lab located in Cambridge, England.
- Authors for this paper (Nature 1981, 290:457-465) were listed in alphabetical order so Stan <u>Anderson</u> was the first author.
- This sequence has come to be referred to as the "Anderson" sequence (GenBank accession: M63933).
- This first sequence is sometimes called the Cambridge Reference Sequence (CRS).

Re-Sequencing of CRS


- The 1981 sequence was derived primarily from a placenta of an individual with European ancestry; however, some HeLa and bovine sequence was used to fill in gaps due to early sequencing procedures performed.
- Re-analysis of original placental material by Andrews et al. (1999) found 11 nucleotides that differed from Anderson et al. (1981) sequence.
- This revised Cambridge Reference Sequence (rCRS) is now the accepted standard for comparison.

- (ierson e	t al. 198	31) and	rCRS (Andrews
Nucleotide Position	Region of mtGenome	Original CRS	Revised CRS	Remarks
3106-3107	165 rRNA	cc	c	Error
3423	ND1	G	т	Error
4985	ND2	G	A	Error
9559	COIII	G	с	Error
11335	ND4	т	c	Error
13702	ND5	G	c	Error
14199	NDG	G	т	Error
14272	ND6	G	с	Error (bovine sequence inserted)
14365	ND6	G	c	Error (bovine sequence inserted)
14368	ND6	G	с	Error
14766	cyt b	т	с	Error (HeLa sequence Inserted)

Maternal Inheritance of mtDNA

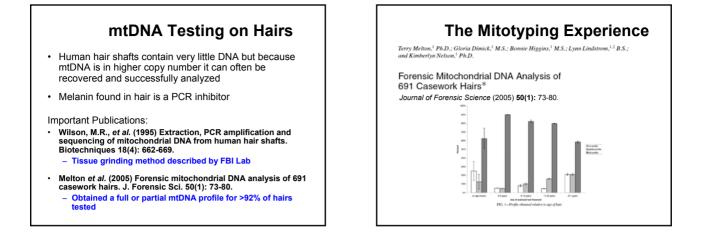
- · Fertilizing sperm contributes only nuclear DNA.
- Cellular components including the mitochondria in the cytoplasm come from the mother's ovum.
- Any sperm mitochondria that may enter a fertilized egg are selectively destroyed due to a ubiquitin tag added during spermatogenesis.
- Barring mutation, a mother passes her mtDNA type on to her children.

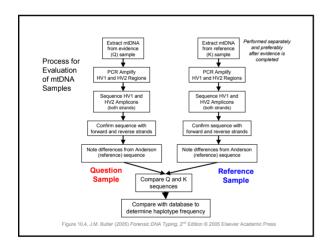
Summary – mtDNA Characteristics

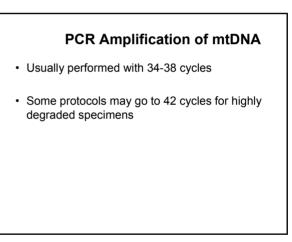
- High copy number of mtDNA.
- · Maternal inheritance of mtDNA.
- · Lack of recombination.
- High mutation rate compared to single copy nucDNA.

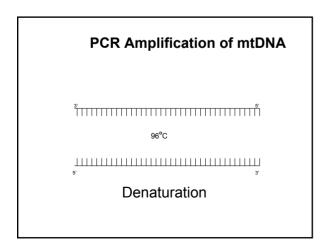
Methods for Measuring mtDNA Variation

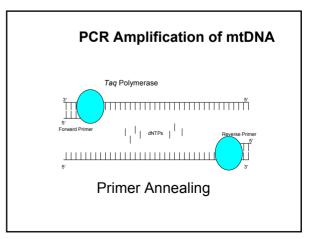
- Low-resolution RFLP (1980s)
- High-resolution RFLP (1990s)
- Sequence analysis of HV1 and HV2 within control region (1991-present)
- Sequence analysis of complete mtDNA genome (2000-present)

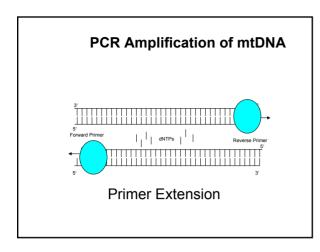

Mitochondrial DNA Sequencing in Forensic Casework

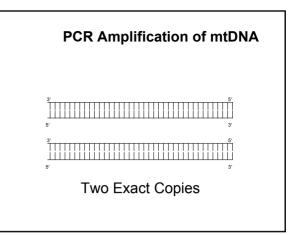

Issues and Examples

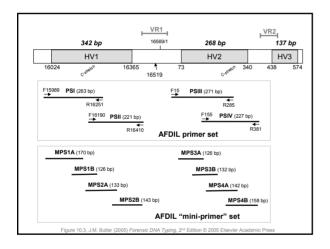

Candidates for mtDNA Testing

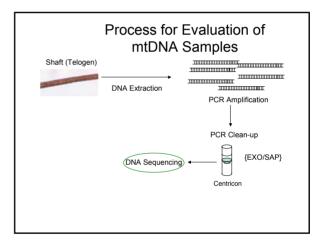

- Shed hairs lacking root bulb or attached tissue
- Fragments of hair shafts.
- Aged bones or teeth that have been subjected to long periods of exposure.
- Crime scene stains or swabs that were unsuccessful for nuclear DNA testing.
- Tissues (muscle, organ, skin) that were unsuccessful for nuclear DNA testing.

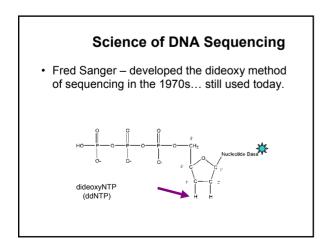

Terry Melton – International Symposium on the Application of DNA Technologies in Analytical Sciences

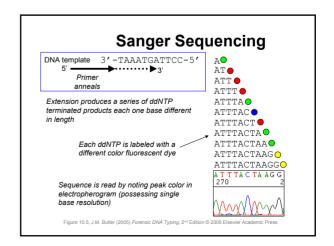


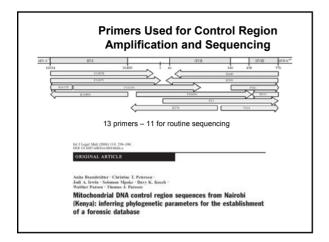


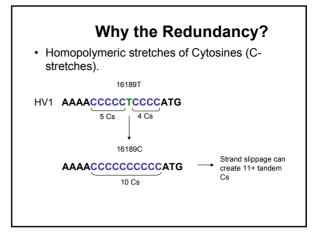


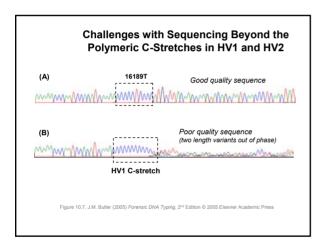


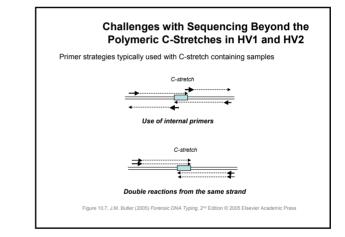


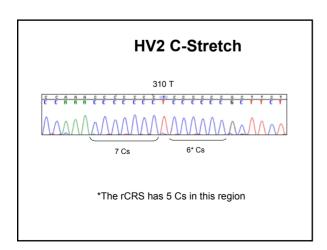


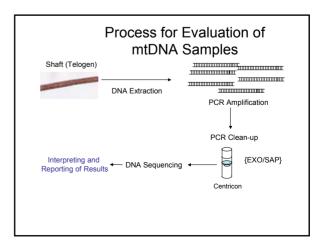


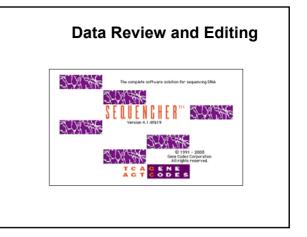


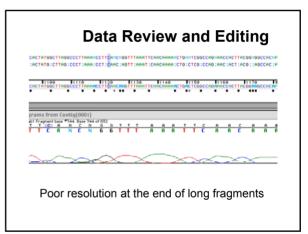


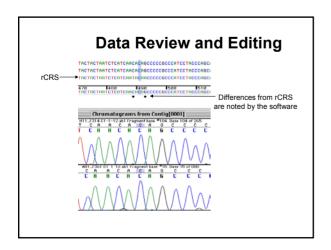


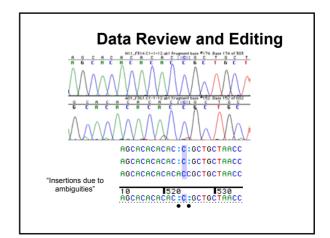


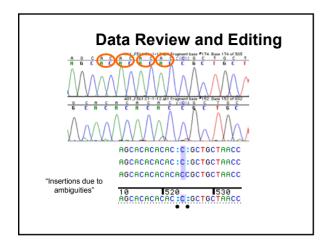


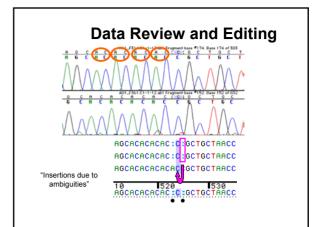


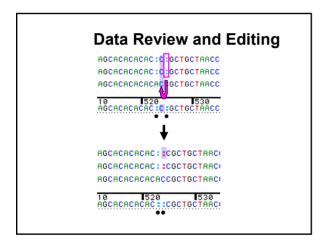


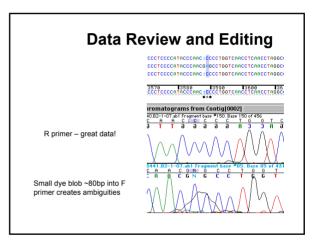


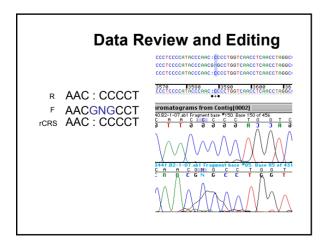

Interpreting and Reporting mtDNA Results

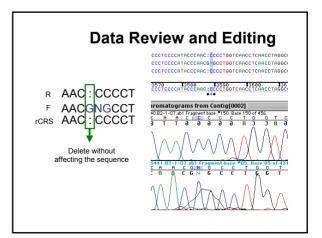


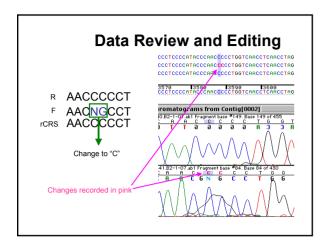

		Butu			ana	Editi	''9
			H11_F3	14.C1=1=12.ab1	1		E
٠	Overview Out Ma	. 🖿 🖛 🛛	Ruler Find	Show Chroni	Nogram		
	he: 922			served Strand)		Seque	ve Leigth: 92
			Font 🖸			. 1 8	
	CININTGCAA	NECEADADA	AAAGNACCCT	AACACCAGCC	TAACNAGNAT		
5 61	TICAMATTIT	ATCTTTTGGC	GETATECACE	TITTAACAGT	CALCECCEAA		
101	CTAACACATT	ATTTTCCCCT	CCCACTCCCA	TACTACTAAT	CTCATCAACA		
151	CAGCCCCCGC	CCATCCTACC	CAGCACACAC	ACCGCTGCTA	ACCCCATACC		
201	CEGAACEAAC	CAAACCCCCAA	AGACACCCCC	CACAGTTTAT	GTAGCTTACC		
261	TECTEAAAGE	AATACACTGA	AAATGTTTAG	ACGGGCTCAC	ATCACCCCAT		
301	AAAACAAAAN	GNGGNNNNNG	NNNNNNNNN	NNNNNNNNN	NGNNNNGNNN		
191	NNNNGNNNN	NNNGNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN		
401	GNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN		
451	NNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNN		
501	Trim	nina of	data (p	rimer se	equence	es too)	
551	NI		aata (p			,0 (00)	
001	PRINTER PRINTER PRINTER	NERVENNENNEN	NNNNNNNNNNN	NUMBER	NEW PROPERTY AND A DESCRIPTION		
451 701	NUMBER	NUMBER	NAMANANANANA	NUMBER	NUMBER		
751	NNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNN	NNNNNNNNNN		
001	NNNNNNNNN	NNNNNNNNN	NNNNNNNNNN	NINNNNNNNNN	NUMBER		
851	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN		
901	NNNNNNNNNN	NNNNNNNNN	4				

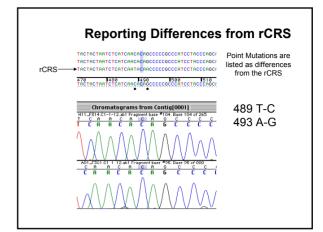


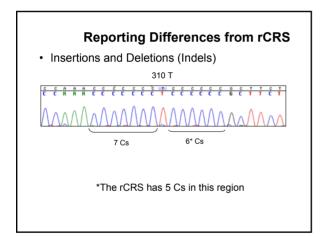


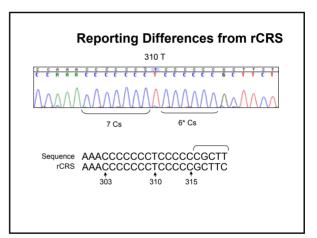


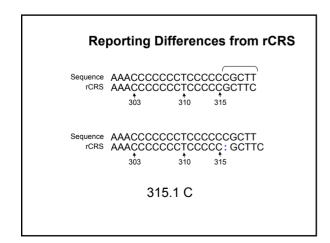


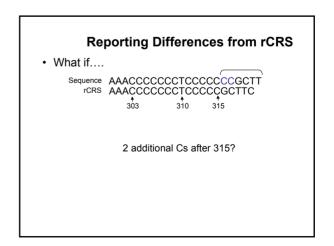


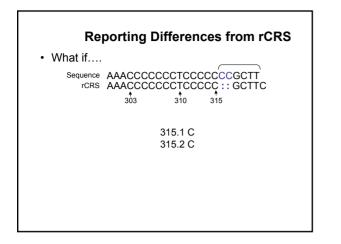


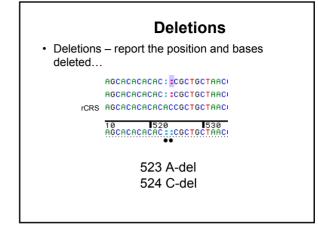


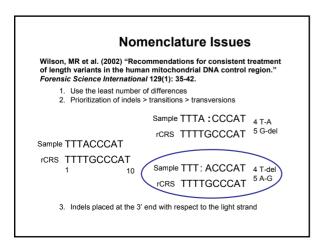


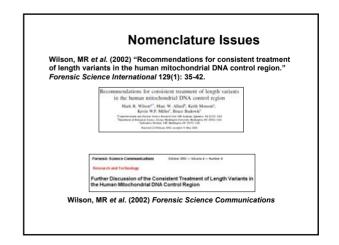


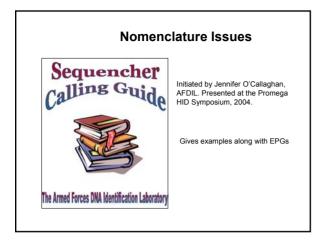


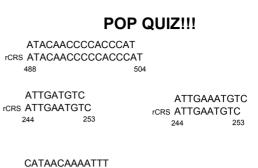




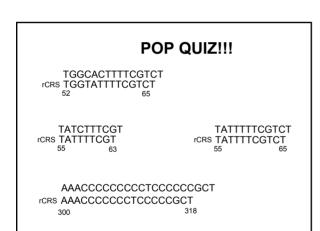







Nomeno	clature Issues
Wilson, MR et al. (2002) "Recommen of length variants in the human mito Forensic Science International 129(1	chondrial DNA control region."
 Use the least number of differ Prioritization of indels > transi 	
<u>Transitions</u> A-G C-T	<u>Transversions</u> A-T A-C G-T G-C
(Purine-Purine) (Pyrimidine-Pyrimidine)	(Purine-Pyrimidine) (Pyrimidine-Purine)
3. Indels placed at the 3' end wit	th respect to the light strand

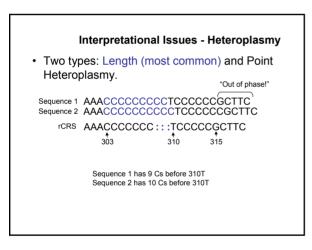
	nenclature Issues
	ommendations for consistent treatment an mitochondrial DNA control region." <i>al</i> 129(1): 35-42.
 Use the least number Prioritization of indels 	of differences > transitions > transversions
	Sample TTTA : CCCAT 4 T-A
	rCRS TTTTGCCCAT 5 G-del
ample TTTACCCAT	
CRS TTTTGCCCAT	Sample TTT: ACCCAT 4 T-del
. 10	rCRS TTTTGCCCAT 5 G-A
	rCRS TTTTGCCCAT

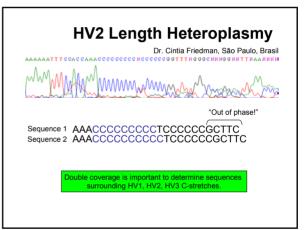


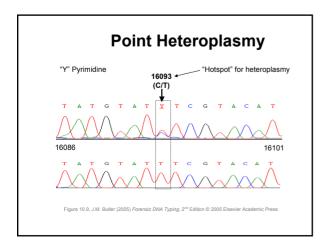
CATAACAAAATTT rCRS CATAACAAAAATTT 280 294

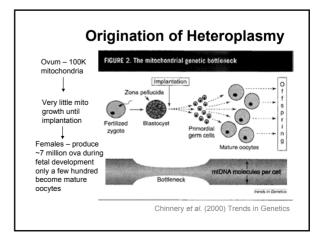
	Nomenclature Issues				
	sistency is needed – especially for base searches.				
Lab 01	513 Sample GCACACACACACACCGCT rCRS GCACACACACACCGCT				
Lab 02	Sample GCACACACACACCGCT rCRS GCACACACACACCGCT				
Lab 03	Sample GCACACACACACACCGCT rCRS GCACACACACACCGCT				

	Nomenclature Issues		
	sistency is needed – especially for base searches.		
Lab 01	Sample GCACACACACACACACCGCT 524.1 A rCRS GCACACACACACCAC 524.2 C 1 2 3 4 5		
Lab 02	Sample GCACACACACACACCGCT 523.1 C rCRS GCACACACACACA::CCGCT 523.2 A 1 2 3 4 5		
Lab 03	Sample GCACACACACACACACCGCT 514.1 A rCRS GC :: ACACACACACCGCT 514.2 C 1 2 3 4 5		


Nomenclature Issues			
Lab 01 16519 T-C 263 A-G 315.1 C ≠ 524.1 A 524.2 C Each lab submits 20 seq	Lab 02 16519 T-C 263 A-G 315.1 C ≠ 523.1 C 523.2 A uences above into the po	Lab 03 16519 T-C 263 A-G 315.1 C 514.1 A 514.2 C pulation DB (N=1000)	
	 Will match the 20 samp 	les submitted by Lab 01	
16519 T-C 263 A-G 315.1 C 524.1 A 524.2 C	Apparent Frequency True Frequency	= 20/1000 (0.02) = 60/1000 (0.06)	
Underestimation of the true frequency			


Interpretational Issues - Heteroplasmy


- Heteroplasmy the presence of more than one mtDNA type in an individual (Melton 2004).
- Once thought to be rare, heteroplasmy exists (at some level) in all tissues (Melton 2004).
- Especially important in hair analysis (semiclonal).


Heteroplasmy

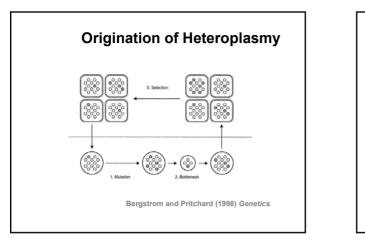
- · Some interesting papers (forensic focus)...
- Melton, T. (2004) Mitochondrial DNA heteroplasmy. Forensic Science Reviews 16:1-20.
- Calloway et al. (2000) The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age. Am J Hum Genet. 66(4):1384-1397.
- Stewart et al. (2001) Length variation in HV2 of the human mitochondrial DNA control region. Journal of Forensic Science 46(4):862-870.
- Sekiguchi et al. (2003) Inter- and intragenerational transmission of a human mitochondrial DNA heteroplasmy among 13 maternally-related individuals and differences between and within tissues in two family members. *Mitochondrion* 2(6):401-414.
- Salas et al. (2001) Heteroplasmy in mtDNA and the weight of evidence in forensic mtDNA analysis: a case report. Int J Legal Med. 114(3):186-190.
- Tully, L et al. (2000) A sensitive denaturing gradient-Gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am J Hum Genet. 67(2):432-443.

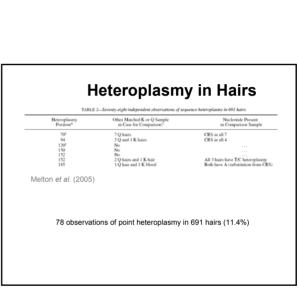
Buccal Swabs

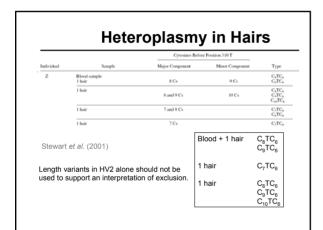
16291

Heteroplasmic Variation

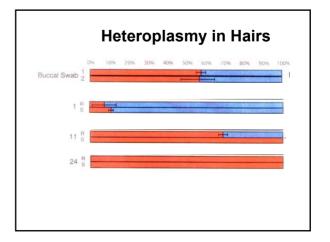
Heteroplasmic variation among family members

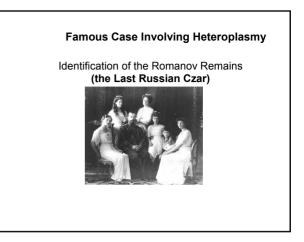

Generation

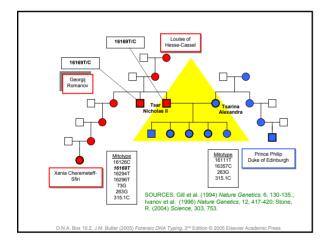

1

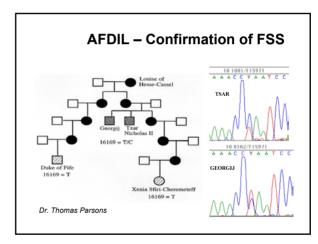

2

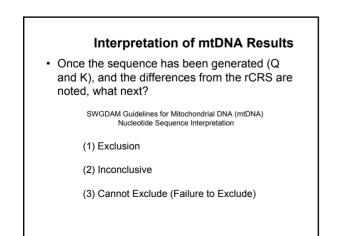
3

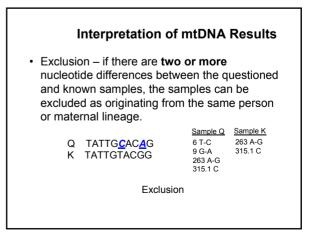

Sekiguchi et al. (2003)

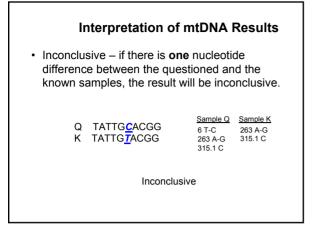


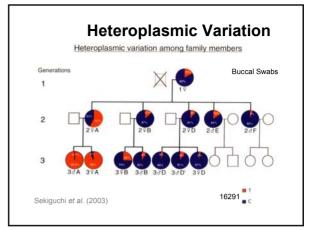




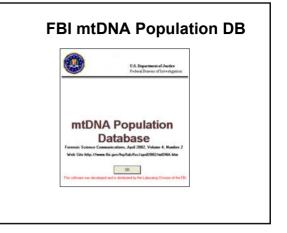

Heteroplasmy Detection

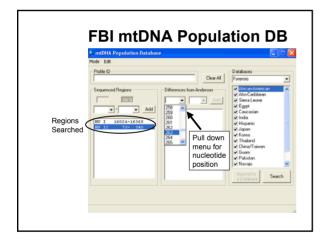

- Detection of heteroplasmy sequencing can detect only to ~10% level.
- Other methods (e.g. DGGE) are much more sensitive.

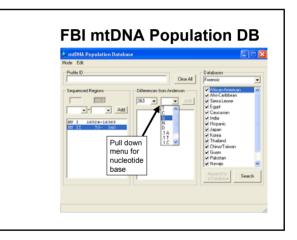


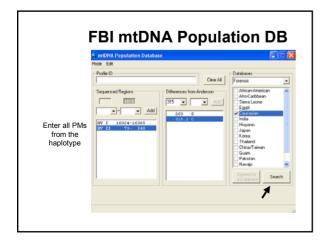


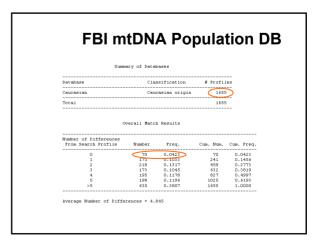
Interpretation of mtDNA Results					
 Cannot Exclude – if the se questioned and known sar comparison have a commo position or a common leng C-stretch, the samples car originating from the same maternal lineage. 	nples under on base at each th variant in the HV2 anot be excluded as				
Q TATTGTACGG K TATTGTACGG	Sample Q Sample K 152 T-C 152 T-C 263 A-G 263 A-G 315.1 C 315.1 C				
Cannot Exclude					

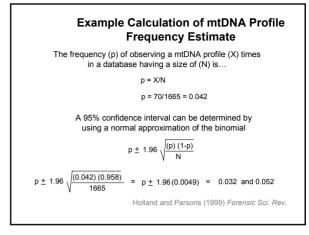

• How would you interpret these results?				
Q TATTGTAC <u>A/G</u> G K TATTGTAC <u>G</u> G	Sample Q Sample K 9 G-R 263 A-G 263 A-G 315.1 C 315.1 C			
Q TATTGTAC <u>A/G</u> G K TATTGTAC <u>G/A</u> G	Sample Q Sample K 9 G-R 9 G-R 152 T-C 152 T-C 263 A-G 263 A-G 315.1 C 315.1 C			


• How would you interpret these results?				
Q ΤΑ Ι ΤGTAC <mark>A</mark> G Κ ΤΑ <u>C</u> TGTAC G G	Sample Q Sample K 16519 T-C 16519 T-C 9 G-A 3 T-C 263 A-G 263 A-G 315.1 C 315.1 C			
Q TATTGTACGG K TATTGTACGG	Sample Q Sample K 16519 T-C 16519 T-C 152 T-C 152 T-C 263 A-G 263 A-G 309.1 C 315.1 C			


POP QUIZ!!!					
TATTGTACGG TATTG <mark>C</mark> ACGG	Sample Q Sample K 16519 T-C 16519 T-C 263 A-G 152 T-C 309.1 C 263 A-G 315.1 C 315.1 C				
TATTGT _7 ACGG TAT <u>:</u> GT :ACGG	Sample Q Sample K 16519 T-C 16519 T-C 6.1 T 4 T-del 263 A-G 263 A-G 315.1 C 315.1 C				
	TATTGTACGG TATTG <u>C</u> ACGG TATTGT <u>T</u> ACGG				


Reporting Statistics


- When "cannot exclude" is the interpretation, then a statistical estimate is needed in order to weigh the significance of the observed match
- Counting method is most common approach used and involves counting the number of times that a particular mtDNA haplotype (sequence) is seen in a database
- The larger the number of unrelated individuals in the database, the better the statistics will be for a random match frequency estimate.

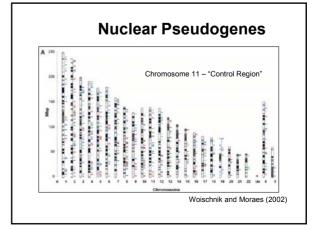


Summary of Databases					
Database		ssification	# Profi	les	
Caucasian		casian origin	165	5	
Total			165	5	
6 of the database i	s 1 mutati	on away fro	om the sea	arched ha	
	<mark>s 1 mutati</mark> _{Number}	on away fro		Cum. Freq	
Number of Differences	Number 70	Freq.	Cum. Num. 70	Cum. Freq 0.0423	
Number of Differences From Search Profile	Number 70 171	Freq.	Cum. Num. 70 241	Cum. Freq 0.0423 0.1456	
Number of Differences From Search Profile	Number 70	Freq.	Cum. Num. 70	Cum. Freq 0.0423	
Number of Differences From Search Profile	Number 70 171 218 173 195	Freq. 0.0423 0.1033 0.1317 0.1045 0.1178	Cum. Num. 70 241 459	Cum. Freq 0.0423 0.1456 0.2773 0.3819	
Number of Differences From Search Profile	Number 70 171 218 173	Freq. 0.0423 0.1033 0.1317 0.1045	Cum. Num. 70 241 459 632	Cum. Fre 0.0423 0.1456 0.2773 0.3819 0.4997	

Issues Impacting mtDNA Interpretation

Challenges with mtDNA

- Data Interpretation
 - Heteroplasmy
 - Sample mixtures (Dr. Danielson)
 - Other Issues (Pseudogenes, etc...)
- DNA Database Sizes - Similar issues to Y-STRs but takes longer to generate mtDNA data than Y-STR haplotypes
- DNA Database Quality


Nuclear Pseudogenes

- · Thoughout history movement of mtDNA genes into the nucleus.
- Nuclear Pseudogenes (nuclear-mitochondrial like sequence *numts*) - could potentially be amplified, confounding interpretation. "Molecular Fossils"

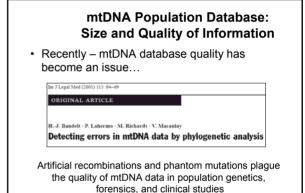
Genome Research (2002) Pattern of Organization of Human Mitochondrial Pseudogenes in the Nuclear Genome

Markus Woischnik and Carlos T. Moraes¹

Article

Nuclear Pseudogenes

- Typically numts are not a problem for forensics - mtDNA high copy number
- · "Mitochondrial DNA pseudogenes in the nuclear genome as possible sources of contamination" - Goios A, Amorim A, Pereira L. ISFG meeting in the Azores, 2005.
- · Extraordinary measures to observe a numt (Possibly seen by Grzbowski 2000 - nested PCR ~ 60 cycles).


mtDNA Recombination

- Adam Eyre-Walker and colleagues proposed that paternal contribution of mtDNA has caused recombination.
- · Some of their assumptions along with the data that was analyzed have been wrong (more tomorrow).

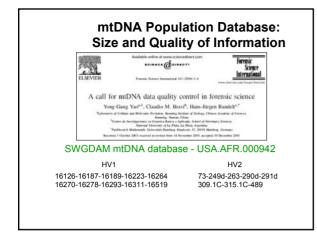
mtDNA Population Database: Size and Quality of Information

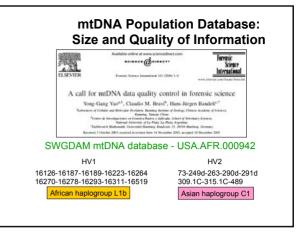
Population databases are critical for estimating expected frequencies. The more, the better.

Database	# Profiles
African-American	1148
Afro-Caribbean	0
Sierra Leone	109
Caucasian	1655
Hispanic	686
Japan	163
Korea	182
Thailand	52
Navajo	146
Apache	180
Egypt	48
China/Taiwan	356
Guam	87
India	19 🗲
Pakistan	8 🗲
Total	4839

mtDNA Population Database: Size and Quality of Information

• Bandelt et al. (2001)

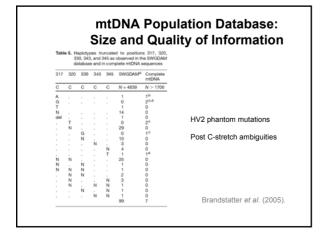

"In order to meet high-quality standards in forensics, sequencing should be performed in both directions (Bär et al. 2000). It is then important to read the two series of outputs separately (against the $\ensuremath{\mathsf{CRS}}\xspace)$ and to transform either series into a data table independently, preferably of different formats (motif vs dot table); finally, the two tables should be compared by computer.

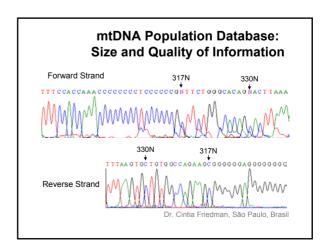

mtDNA Population Database: Size and Quality of Information

Problems in FBI mtDNA Database

Bandelt, Salas, and Bravi (2004) Science

Found 5 examples of artificial recombination among the 1148 African Americans in the database

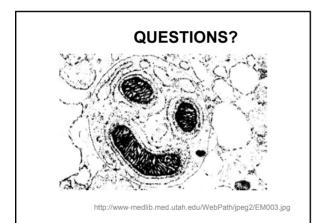



mtDNA Population Database: Size and Quality of Information

- Phantom mutations Bandelt et al. (2002); Brandstatter et al. (2005).
- Phantom mutations are systematic artifacts generated during cycle sequencing. These can be created by either the sequencing chemistry, the automated sequencer, or lab procedures.
- Single-strand sequencing (e.g. F only) is highly susceptible to generating phantom mutations.

mtDNA Population Database: Size and Quality of Information

Sequencer	Sequencing chemistries*	Post-PCR treatment	Number of sequence	Artificial deletions 16	Artificial insertions	Artificial substitu- tions	Artifacts per sequence	Sample score (average QV)	Source
ABI310	BD1	Enzymatic	23	10	2	13	1.1	30.6	1
ABI310	BD1	Via columns	20	5	1	10	0.8	28.9	1
ABI310	BD2	Via columns	30	0	1	6	0.2	28.4	2
ABI310	DR	Enzymatic	48	14	4	57	1.6	29.7	1
ABI310	DR	Via columns	45	16	3	51	1.6	29.0	1
ABI377	BD2	Via columna	45	0	6	35	0,9	31.6	2
ABI377	BD3	Via columns	18	0	7	48	3.1	26.6	2
ABI377	DP	Via columns	34	5	2	56	1.9	28.1	2
ABI377	DR	Via columns	31	0	1	88	2.9	24.9	2
ABI3100	BD1	Enzymatic	50	20	2	65	1.7	31.6	1
ABI3100	BD2	Via columns	46	3	5	49	1.2	28.2	2
ABI3100	BD3	Via columns	38	2	5	52	1.6	31.6	1
ABI3100	DR	Enzymatic	21	29	3	181	10.1	27.7	1
ABI3100	DR	Via columns	16	23	0	169	12.0	28.9	1
ABI3700	BD2	Enzymatic	72	0	12	43	0.8	31.3	2


mtDNA Population Database: Size and Quality of Information

- Recent efforts to increase DB sizes and quality have been undertaken by the NIJ (Grant to AFDIL Research Section) for entire control region sequences.
- EDNAP Mitochondrial Population Database (EMPOP) – developing QC tools to check sequences, including the ability to see electropherograms of all polymorphisms.

Acknowledgments

- Dr. John Butler (NIST)
- Dr. Tom Parsons (ICMP, formally AFDIL)
- · Dr. Cintia Friedman (Brasil)
- Jodi Irwin, Rebecca Just, and the AFDIL Research Section.

Disclaimer This project was funded by the National Institute of Justice through interagency agreement 2005-U-R-029 to the NIST Office of Law Enforcement Standards. Points of view are those of the authors and do not necessarily represent the official position or policies of the US Department of Justice. Certain commercial equipment, instruments and materials are identified in order to specify experimential procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose.

