NIST Research Update-April 2005

NIS

• Information on New Loci (Y-Chromosome, new STRs)

ě

Markers

STRBase, training materials, variant allele sequencing etc.

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Review Article on STRs and CE						
Electrophoresis 2004, 25, 1397-1	412	Contents				
Review John M. Butler ¹ Eric Buej ² Federica Crivelante ³⁺ Bruce R. McCord ³ ¹ National Institute of Standards and Technology Division, Galibrarbuey, MJ, USA Waterbuey, VT, USA ¹ Onio University, Department of Chemistry, Attnens, OH, USA	Forensic DN, using the AB for STR analy DNA typing with shor applications including tor many laboratories for many laboratories ing sample preparat result using CC syst error in the organization throughput and ease	Introduction General aspects General aspects Sample preparation and injection Sample separation and injection Sample separation matrix The buffer Sample detection Sample interpretation Sample interpretation Sample interpretation Forensic casework Se DNA databasing Increasing sample throughput. Increasing sample throughput. Increasing sample throughput. Gameric Casework Sample enthods for DNA typing with STR markers.	1397 1397 1400 1401 1402 1403 1403 1404 1405 1406 1406 1406 1406 1407 1407 1407 1408 1408 1408 1409			

New Valida	ation <mark>.cstl.</mark> nation	HOMED .nist.gov/b .to Aid Fore	age on STRBase N iotech/strbase/validation.h	5 tm
Validation Summa We are initiating an effort Intrature. The purpose of tested, and the number of SWOEMA Revised Valid documented and summa Belowis listed a compils STR kits, in-house assay full reference bibliograph specific Validation Stum K0, Assay, or instrument PowerPlex Y	to catalo this effor 's amples uboratorie lation Gu rized." tion of re s, instrum ¿is listed mary St Refer Kom	ets Antime des notationalités est autorités de la construité de la constru	Advancementation of the set	2.000 2.000 40 12:22 単 片 本 第12:42 単 単 2:50 2:50 2:50 2:50 2:50 2:50 2:50 2:50
Cofiler SGM Plus	al. (2 Pawli LaFo et al. Cotto	Thermal cyclin test. Maile specificity TagGott polymeraues thation Promer pair thation Magnesium thation	4 modes (400240906005700) r 1 sample - [] models i 3 sets i 12 ambelig [] modes i 3 biologica sales (3 500 g simple (244) s models i 5 amounts (3 500 g 206) This 444 i 13 () i 4 quarters (10 50 206 1) ag Divo 5 amounts (3 500 g 206) This 500 g simple (3 500 g 206) 3 ag Divo 5 amounts (3 500 g 206) This 500 g simple (3 500 g 206) 5 amounts (3 500 g 206) 5 amounts (3 500 g 206)	16 10 20 20 20 20 20 20 20 20 20 20
AmpFISTR Oreen 1	Piolt (Cammenta: Oth	er information and conclusions	

Validation	Summary Sheet for PowerPlex Y	NIST
Study Completed (17 studies done)	Description of Samples Tested (performed in 7 labs and Promega)	# Run
Single Source (Concordance)	5 samples x 8 labs	40
Mixture Ratio (male:female)	6 labs x 2 M/F mixture series x 11 ratios (1:0,1:1,1:10,1:100,1:300,1:1000,0.5:300, 0.25:300,0.125:300, 0.0625:300, 0.03:300 ng M:F)	132
Mixture Ratio (male:male)	6 labs x 2 M/M mixtures series x 11 ratios (1:0, 19:1, 9:1, 5:1, 2:1, 1:1, 1:2, 1:5, 1:9, 1:19, 0:1)	132
Sensitivity	7 labs x 2 series x 6 amounts (1/0.5/0.25/0.125/0.06/0.03)	84
Non-Human	24 animals	24
NIST SRM	6 components of SRM 2395	6
Precision (ABI 3100 and ABI 377)	10 ladder replicates + 10 sample replicated + [8 ladders + 8 samples for 377]	36
Non-Probative Cases	65 cases with 102 samples	102
Stutter	412 males used	412
Peak Height Ratio	N/A (except for DYS385 but no studies were noted)	
Cycling Parameters	5 cycles (28/27/26/25/24) x 8 punch sizes x 2 samples	80
Annealing Temperature	5 labs x 5 temperatures (54/58/60/62/64) x 1 sample	25
Reaction volume	5 volumes (50/25/15/12.5/6.25) x [5 amounts + 5 concentrations]	50
Thermal cycler test	4 models (480/2400/9600/9700) x 1 sample + [3 models x 3 sets x 12 samples]	76
Male-specificity	2 females x 1 titration series (0-500 ng female DNA) x 5 amounts each	10
TaqGold polymerase titration	5 amounts (1.38/2.06/2.75/3.44/4.13 U) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Primer pair titration	5 amounts (0.5x/0.75x/1x/1.5x/2x) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Magnesium titration	5 amounts (1/1.25/1.5/1.75/2 mM Mg) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Krenke et al. (2005) Forensid	C Sci. Int. 148: 1-14 TOTAL SAMPLES EXAMINED	1269

NIST Research Update-April 2005

	NS Recovered Volumes from DNA Extractions – Sample 02						
Sample	Recovered Volume (uL)	Approx. Quantity (ng/uL)	Approx. Final Conc.(ng/uL)	Sample	Recovered Volume (uL)	Approx. Quantity (ng/uL)	Approx. Final Conc.(ng/uL)
02 blood - day 0	22	3.8		02 saliva - day 0	17	6.45	
02 blood - day 0	26	4.36	5.161	02 saliva - day 0	17	17.74	8.952
02 blood - day 0	22	7.47		02 saliva - day 0	24	4.5	
02 blood - week 2	31	0.741		02 saliva - week 2	22	0.104	
02 blood - week 2	21	0.884	0.921	02 saliva - week 2	26	0.04	0.057
02 blood - week 2	16	1.32		02 saliva - week 2	21	0.029	
02 blood - week 8	37	0.188		02 saliva - week 8	26	0.01	
02 blood - week 8	25	0.237	0.249	02 saliva - week 8	17	0.015	0.013
02 blood - week 8	21	0.372		02 saliva - week 8	22	0.014	
02 blood - week 16	29	1.16		02 saliva - week 12	33	0.004	
02 blood - week 16	25	0.224	0.455	02 saliva - week 12	34	0.006	0.034
02 blood - week 16	38	0.068		02 saliva - week 12	27	0.106	
Reagent Blank	18	0	0.000	Reagent Blank	42	0	0.000
				E	ENSFI Degra	aded DNA Col	laborative Study

Standard U.S. Population Dataset NIST http://www.cstl.nist.gov/biotech/strbase/NISTpop.htm 260 Caucasians, 260 African Americans, 140 Hispanics, 3 Asians = 663 males					
Genetic Markers Common STRs	Loci Examined Identifiler kit 15 STRs (CODIS + D2S1338 & D19S433)	Publications Butler et al. (2003) JFS			
miniSTRs New autosomal STRs	All CODIS loci except D3S1358 New 6 loci for miniSTRs	Drabek et al. (2004) JFS Coble et al. (2005) JFS			
Autosomal SNPs	70 C/T SNPs (Orchid panel)	Vallone et al. (2004) FSI			
Common Y-STRs	22 loci (27 regions) Yfiler concordance study	Schoske et al. (2004) FSI Data in ABI Yfiler database			
New Y-STRs	27 additional loci	Butler et al., in press FSI			
Y-SNPs	50 loci spanning haplogroups A-R	Vallone et al. (2004) JFS			
mtDNA	LINEAR ARRAY and coding mtSNPs Full control regions by AFDIL	Kline et al. (2005) JFS inclusion in EMPOP			

NIS

	DYS576						
	15 AAAG repeats						
G A AT A				A A A G <mark>A A A G</mark> A A A A A			
WWWWWWWWWWWWWWWWWWWWWW							
Allele	Combined Freq (N = 659)	Cau freq (N = 261)	Afr Am freq (N = 258)	Hisp freq (N = 140)			
13	0.0030	0.0038	0.0039	0.0000			
14	0.0273	0.0115	0.0426	0.0286			
15	0.1047	0.0421	0.1977	0.0500			
16	0.1745	0.1762	0.2016	0.1214			
17	0.2640	0.2835	0.2209	0.3071			
18	0.2822	0.3257	0.2403	0.2786			
19	0.1077	0.1188	0.0698	0.1571			
20	0.0288	0.0307	0.0194	0.0429			
21	0.0076	0.0077	0.0039	0.0143			
Butler et al. (2005) in press FSI							

- Butler, J.M., Decker, A.E., Kline, M.C., Vallone, P.M. (2005) Chromosomal duplications along the Ychromosome and their potential impact on Y-STR interpretation, J. Forensic Sci., in press.
- Butler, J.M., Decker, A.E., Vallone, P.M., Kline, M.C. (2005) Allele Frequencies for 27 Y-STR Loci with U.S. Caucasian, African American, and Hispanic Samples, *Forensic Sci. Int., in press.*
- Butler, J.M. and Schoske, R. (2005) U.S. population data for the multi-copy Y-STR locus DYS464, J. Forensic Sci., in press.

 Collaboration with AFDIL (Tom Parsons) for developing coding SNP assays using SNaPshot

Coble, M.D., Just, R.S., O'Callaghan, J.E., Letmanyi, I.H., Peterson, C.T., Irwin, J.A., Parsons, T.J. (2004) Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians. *Int. J. Legal Med.*, 118: 137-146.

Vallone, P.M., Just, R.S., Coble, M.D., Butler, J.M., Parsons, T.J. (2004) A multiplex allelespecific primer extension assay for forensically informative SNPs distributed throughout the mitochondrial genome. *Int. J. Legal Med.*, 118: 147-157.

