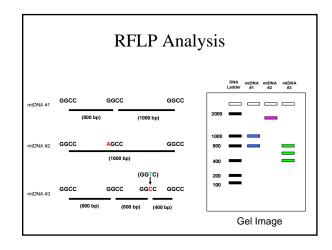
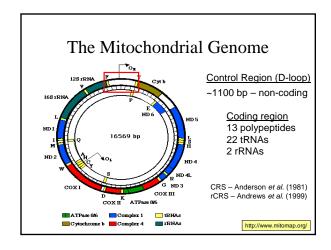
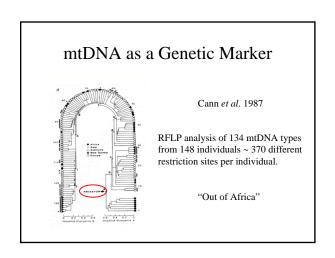

Forensic Application of Sequence Variation in the Human mtDNA Genome


Mitochondrial Molecular Biology and Pathology Workshop NIH – Bethesda, MD April 29, 2005


Michael D. Coble¹, Rebecca S. Just², Jessica L. Saunier²; Jennifer E. O'Callaghan²; Ilona H. Letmanyi², Christine T. Peterson², Jodi A. Irwin²; Peter M. Vallone¹, John M. Butler¹, and Thomas J. Parsons².


¹National Institute of Standards and Technology, Gaithersburg, MD, USA ²The Armed Forces DNA Identification Laboratory, Rockville, MD, USA

mtDNA as a Genetic Marker

Control Region Sequence Analysis of 189 individuals

Vigilant et al. 1991

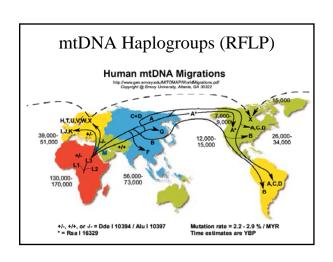
mtDNA as a Genetic Marker

- RFLP variation also revealed continent-specific polymorphisms for classifying mtDNAs.
- Haplotype the mtDNA sequence variations within an individual.
- Haplogroup a group of related haplotypes. These form monophyletic clades on a phylogenetic tree.

mtDNA as a Genetic Marker

- Templeton (1992) Science Found phylogenetic trees that were more parsimonious than Vigilant et al. AND these trees did not suggest an "Out of African" origin.
- More sequence data and better tree-building methods confirmed the OOA hypothesis (Penny et al. 1995; Watson et al. 1997)

Mitochondrial Haplogroups Haplogroup - A group of related haplotypes. Each haplogroup cluster is defined by a set of specific, shared polymorphisms.


mtDNA as a Genetic Marker

Ingman et al. (2000)

53 entire genome sequences from diverse global populations.

Confirmation for OAA.

Caucasian mtDNA Haplogroups (HV1/HV2)

- H CRS +/- variants
- J 16069 C-T 16126 T-C 73 A-G 295 C-T
- T 16126 T-C 16294 C-T 73 A-G
- V 16298 T-C 72 T-C

Macaulay *et al.* (1999) *AJHG* **64:** 232-249. Allard *et al.* (2002) *JFS* **47:** 1215-1223.

mtDNA as a Forensic Tool

Disadvantages of Using mtDNA

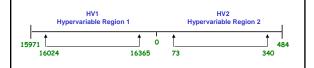
- •Maternal Inheritance You have many!
- •Not a unique identifier cannot multiply frequencies!
- •Some mtDNA types are common in the population

Interesting Aspects of mtDNA

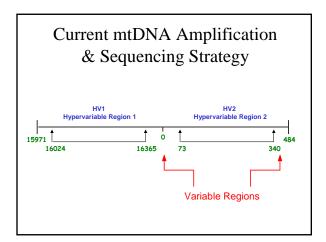
- Unequal base composition heavy strand (purine rich) vs. light strand (pyrimidine rich).
- Transition:Transversion ratio transitions occur more frequently (32:1 – Aquadro and Greenberg (1983)).
- High mutation rate (10X single copy nuclear genes)
- Site to site variability extreme rate heterogeneity (mutational "hotspots").

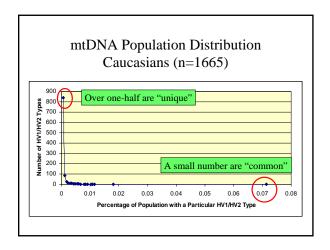
mtDNA as a Forensic Tool

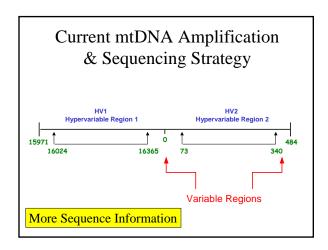
Cases that have utilized mtDNA testing



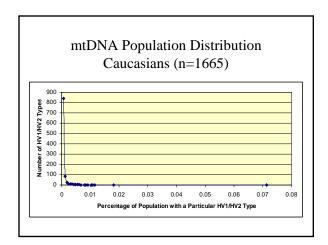
mtDNA as a Forensic Tool


Advantages of Using mtDNA


- •Maternal Inheritance
- •Lack of Recombination
- •High Copy Number
- •Cases where:
 - •DNA is degraded
 - •Only maternal references are available
 - ·Samples with little or no Nuclear DNA
 - •Shed hairs
 - •Fingernails
 - •Old bones


Current mtDNA Amplification & Sequencing Strategy

HV1 + HV2 = 610 bp



Framing the Problem

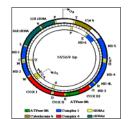
The greatest limitation for mtDNA testing lies with the small number of common types for which the power of discrimination is low.

~20% of the time, the Forensic Scientist encounters a HV1/HV2 type that occurs at greater than ~0.5% of the population

In database or mass fatality comparisons: multiple hits will occur for these common types.

A Case Example

• September 15, 1943 - B17F Bomber returning from a mission to Port Moresby, New Guinea



A Case Example

- The plane crashes in the Owen Stanley Mountain range due to "adverse weather."
- Subsequent searches proved negative.
- 11 crewmen declared non-recoverable on July 22, 1949.

Central Effort

• Sequence variation outside of HV1/HV2 can be used to distinguish Caucasian individuals sharing common types.

Coding Region – evolutionary rate is 4-fold less than the control region.

However...15X Amount of DNA

A Case Example

- October 9, 1992 A private company helicopter discovers crash site.
- mtDNA testing reveals that 3/11 crewmen share the same HV type (263 A-G, 315.1 C).
- Further VR testing could distinguish 1 of the 3 crewmen (16519 T-C). However, 2 crewmen still matched.

Ethical Considerations

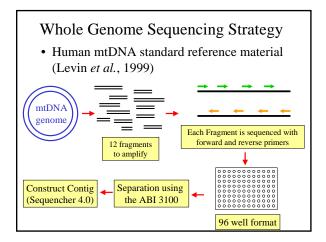
- More than 100 characterized diseases associated with mtDNA mutations (Mitomap – www.mitomap.org)
- To avoid having forensic testing from evolving into genetic counseling, we decided to focus on neutral SNPs in the mtGenome.

A Case Example

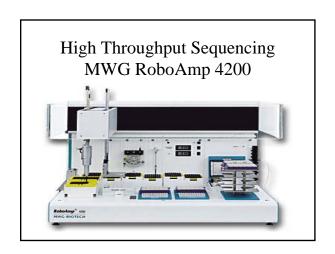
- Partial dental records were used to associate 3 teeth among the 2 crewmen matching in the CR.
- One L femur could not be associated with either crewmen, and was buried in a grave containing group remains

SNPs for Discrimination

- Non-coding sites in the control region (outside of HV1/HV2).
- Non-coding "spacer" regions throughout the mtGenome.
- Silent mutations in protein coding genes.


SNPs for Discrimination

- Practical application A set of SNP sites that can be rapidly assayed to provide maximal discrimination.
- Avoids further sequencing.
- SNaPShotTM (ABI) small amplicons, multiplexed can conserve template.


	Common mtDNA Haplogroups
	5 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Haplo	Seq (+ CRS)
J1	16069 T 16126 C 73 G 185 A 228 A 295 T
J2	16069 T 16126 C 73 G 228 A 295 T
13	16069 T 16126 C 73 G 185 A 188G 228 A 295 T
J4	16069 T 16126 C 16145 A 16172 C 16222 T 16261 T 73 G 242 T 295 T
T1	16126 C 16294 T 16296 T 16304 C 73 G
T2	16126 C 16163 G 16186 T 16189 C 16294 T 73 G 152 C 195 C
T3	16126 C 16294 T 16296 T 73 G
V1	16298 C
K1	16224 C 16311 C 73 G 146 C 152 C
K2	16093 C 16224 C 16311 C 73 G
K3	16224 C 16311 C 73 G
	241 total genomes from 18 common HV1/HV2 types
	(~14% of the total database)
	J1 J2 J3 J4 T1 T2 T3 V1 K1 K2

Strategy for SNP Identification

• Sequence the entire genome of unrelated individuals sharing common HV1/HV2 types in the Caucasian population (focus on 18 of 22 common types that occur at a frequency of 0.5% or greater).

Common mtDNA Haplogroups Com Haplo Seq (+ CRS) CRS 31 H1 25 H2 152 C 11 НЗ 16129 A H4 16263 C 16304 C 73 G Н6 11 16162 G 16209 C 73 G Length Variation in HV2 C-stretch - ignored (see Stewart et al. (2001))

Criteria for SNP Selection

- Neutral.
- Should be shared (within or among individuals sharing the common types).
- · Non-redundant

The Nature of the SNPs

 Are resolving SNPs slow, rare polymorphisms that occurred once during the evolution of a haplogroup?

OR....

• Are resolving SNPs "universally" **fast hot spots**, useful for all haplogroups (L, M, N)?

OR....

The Nature of the SNPs

• Would the SNPs that resolve one group be useful for resolving other closely related groups?

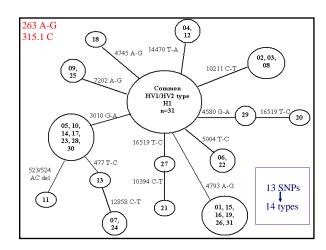
Com	Haplo	Seq (+ CRS)	
31	H1	CRS	
25	H2	152 C	
11	Н3	16129 A	"Hot Spots"
8	H4	16263 C	
12	H5	16304 C	
11	Н6 (73 G	
7	H7	16162 G 162	09 C 73 G

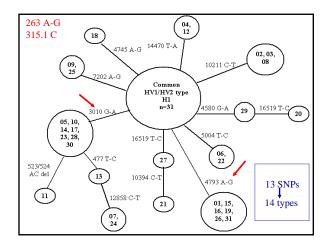
The Nature of the SNPs

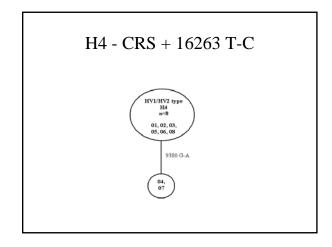
• Are resolving SNPs slow, rare polymorphisms that occurred once during the evolution of a haplogroup?

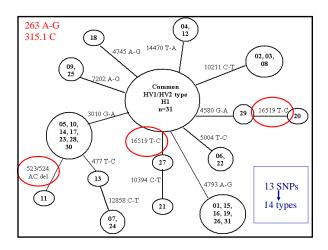
OR....

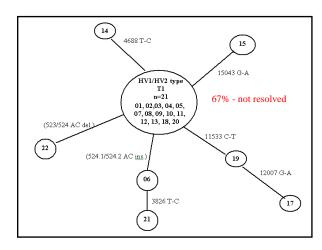
• Are resolving SNPs "universally" **fast hot spots**, useful for all haplogroups (L, M, N)?

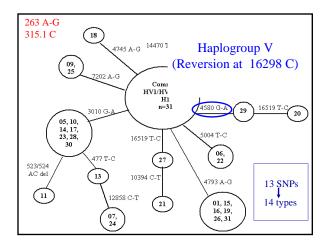

OR....


• Are resolving SNPs a combination of the two?


The Nature of the SNPs


 Are resolving SNPs slow, rare polymorphisms that occurred once during the evolution of a haplogroup?


OR....



Summary

- 241 mtGenomes 420 polymorphic sites in the coding region.
- 32/241 matched one or more individuals over the entire mtGenome (0/12 H5 individuals matched; 4/8 H7 individuals matched).
- Homoplasies common in HV1/HV2.

Homoplasy – Parallel Substitutions

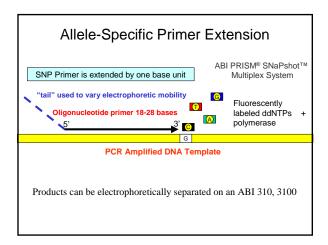
SNPs for Forensic Discrimination

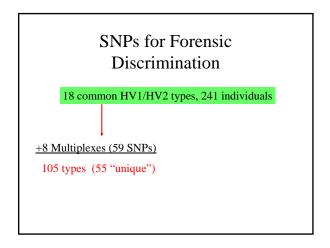
- 59 SNPs that met our criteria (neutral, shared, non-redundant).
 - 49 Protein coding (silent)
 - 8 Control Region (outside HV1/2)
 - 1 Non-coding spacer region
 - 1 16S rRNA*
- * 3010 G-A

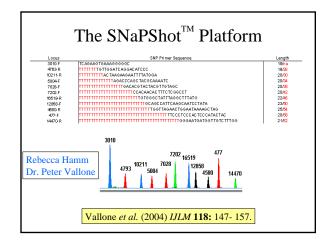
Summary

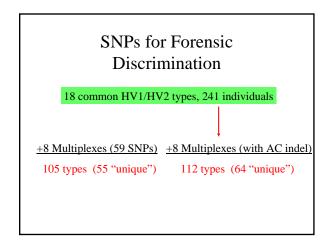
- Percentage of sites that varied ranged from 1.0% (16S rRNA) to 6.6% (non-coding regions outside of the control region).
- ATP Synthase 8 (4.8%) and ATP Synthase 6 (3.7%) showed the greatest variation in the protein coding genes.

		ъ.		Fore			
		D_1	scrin	nnatı	on		
A	В	С	D	Е	F	G	Н
477	477	72	482	4808	64	3826	64
3010	3010	513	5198	5147	4745	3834	4688
4580	3915	4580	6260	9380	10211	4688	11377
4793	5004	5250	9548	9899	10394	6293	12795
5004	6776	11719	9635	11914	10685	7891	13293
7028	8592	12438	11485	15067	11377	11533	14305
7202	10394	12810	11914	16519	14470	12007	16519
10211	10754	14770	15355		14560	12795	
12858	11864	15833	15884		16390	15043	
14470	15340	15884	16368		14869	16390	
16519	16519	16519				16519	




		Di	scrin	ninati	on		
\wedge		וטו	SCIIII	mau	OII		
/ A \	В	С	D	E	F	G	Н
477	477	72	482	4808	64	3826	64
3010	3010	513	5198	5147	4745	3834	4688
4580	3915	4580	6260	9380	10211	4688	11377
4793	5004	5250	9548	9899	10394	6293	12795
5004	6776	11719	9635	11914	10685	7891	13293
7028	8592	12438	11485	15067	11377	11533	14305
7202	10394	12810	11914	16519	14470	12007	16519
10211	10754	14770	15355		14560	12795	
12858	11864	15833	15884		16390	15043	
14470	15340	15884	16368		14869	16390	
16519	16519	16519				16519	
\ /							
H1 /	H2 H3 H6	V1 H5	J1 J2 K2 K3	J4 T2 T3 H4	V1 H1 H2 H3	J1 J3 T1	K1


	SNPs for Forensic Discrimination								
/ A	В	С	D	E	/ F \	G	Н		
477	477	72	482	4808	64	3826	64		
3010	3010	513	5198	5147	4745	3834	4688		
4580	3915	4580	6260	9380	10211	4688	11377		
479:	5004	5250	9548	9899	10394	6293	12795		
5004	6776	11719	9635	11914	10685	7891	13293		
702	8592	12438	11485	15067	11377	11533	14305		
720	10394	12810	11914	16519	14470	12007	16519		
1021	1 10754	14770	15355		14560	12795			
1285	8 11864	15833	15884		16390	15043			
1447	0 15340	15884	16368		14869	16390			
1651	9 16519	16519			\ /	16519			
H1	H2 H3 H6	V1 H5	J1 J2 K2 K3	J4 T2 T3 H4	11 H1 H2 H3	J1 J3 T1	K1		


SNPs for Forensic Discrimination

18 common HV1/HV2 types, 241 individuals

SNPs for Forensic Discrimination

18 common HV1/HV2 types, 241 individuals

<u>+8 Multiplexes (59 SNPs)</u> <u>+8 Multiplexes (with AC indel)</u>

105 types (55 "unique") 112

112 types (64 "unique")

6-fold improvement!

Why not survey the literature for Polymorphisms?

- Prior to Dec. 2000 handful of complete human genomes (mostly RFLP data ~20% of the genome).
- Dec. 2000 Ingman et al. (53 complete global).
- June 2001 Finnila et al. (192 genomes CSGE).
- August 2001 Maca-Myer et al. (42 complete global).
- May 2002 Herrnstadt et al. (560 coding only).
- Jan. 2003 Mishmar et al. (48 complete global).

The Nature of the SNPs

Α	В	C	D	E	F	G	Н
477	477	72	482	4808	64	3826	64
3010	3010	513	5198	5147	4745	3834	4688
4580	3915	4580	6260	9380	10211	4688	1137
4793	5004	5250	9548	9899	10394	6293	1279
5004	6776	11719	9635	11914	10685	7891	1329
7028	8592	12438	11485	15067	11377	11533	1430
7202	10394	12810	11914	16519	14470	12007	16519
10211	10754	14770	15355		14560	12795	
12858	11864	15833	15884		16390	15043	
14470	15340	15884	16368		14869	16390	
16519	16519	16519				16519	
H1	H2 H3 H6	V1 H5	J1 J2 K2 K3	J4 T2 T3 H4	V1 H1 H2 H3	J1 J3 T1	K1

Why not survey the literature for Polymorphisms?

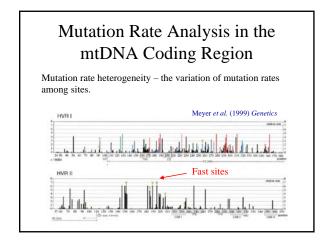
- July 2003 Ingman and Gyllensten (101 complete S.E. Asian)
- Sept. 2003 Kong et al. (48 complete Chinese)
- Oct. 2004 Tanaka *et al.* (672 complete Japanese).
- Nov. 2004 Achilli et al. (62 complete Italian).
- Dec. 2004 Palanichamy et al. (75 complete East Indian).
- Jan. 2005 Starikovskaya et al. (20 complete Native Siberian).

The Nature of the SNPs

 Are the SNPs useful for discrimination mostly slow, rare types restricted to a particular HV1/HV2 type

(OR)


- Do the SNPs have a general utility across many different haplotypes?
- How should one proceed to identify SNPs to resolve common HV1/HV2 types in other forensically relevant populations (e.g. African American)?


Why not survey the literature for Polymorphisms?

1263 Complete Human mtDNA Genomes + 560 Coding Region Sequences

1823 Coding Regions!!

Problem - Very Few Common Types

Recent Recommendations to Increase Forensic mtDNA Discrimination

- Tzen et al. (2001) Sequenced the ATPase genes
- Andreasson *et al.* (2002) Sequenced short fragments of the mtGenome that are most informative
- Lee *et al.* (2002) Sequenced the CytB gene for Koreans
- Lutz-Bonengel *et al.* (2003) Sequenced the ATPase and ND4 genes (highly variable genes)

Mutation Rate Analysis in the mtDNA Control Region

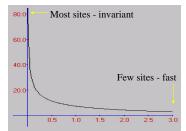
Mutation rate heterogeneity – has been well characterized in the control region using a variety of methods for analysis (Parsimony, Maximum Likelihood, Pairwise Distance methods).

Flaws with this approach

- Variation in one gene is not guaranteed (or likely) to resolve *common* types.
- Focus on one segment could miss SNPs scattered throughout the mtGenome.
- Unintended effect of revealing medically significant information.

Mutation Rate Analysis in the mtDNA Coding Region – Previous Assumptions (I)

- Eyre-Walker *et al.* (1999) *Proc. R. Soc. Lond B.* Using partial DNA sequences of the human mtDNA genome (filled with errors), this group observed a significant amount of recurrent mutations (homoplasy) in their data.
- Conclusion **Recombination!** (between paternal and maternal mtDNA)

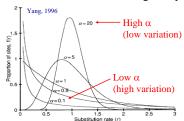

Mutation Rate Analysis in the mtDNA Coding Region -

Previous Assumptions (I)

- Eyre-Walker et al. assume mutation rate *Homo* geneity...
- "There is no evidence of variation in the mutation rate."
- (Mostly discredited for their poor data choice and method of calculating LD)

How is Mutation Rate Variation Measured?

· Control region rates follow a negative binomial distribution (gamma distribution).



Mutation Rate Analysis in the mtDNA Coding Region -Previous Assumptions (II)

- Herrnstadt et al. (2002) AJHG 560 coding region sequences.
- "One important result to emerge from these studies is the *relatively large number of sites* at which *homoplasic events* have occurred." (Referring to their Table 2)

How is Mutation Rate Variation Measured?

• The SHAPE of the curve (α) is inversely related to the amount of heterogeneity

Mutation Rate Analysis in the mtDNA Coding Region -

Previous Assumptions (II)

- Yao et al. (2003) AJHG in response to an Amerindian paper filled with sequence errors.
- "Homoplasy in the coding region is much less than in the control region and may have only a few hot spots (see, e.g., table 2 of Herrnstadt et al. [2002])"

Current Literature

- •Only one study has examined the mutation rate heterogeneity in the coding region.
- •Meyer and von Haeseler (2003) Mol. Biol Evol. Analyzed the 53 mtGenomes from Ingman et al. (2000).

Methods

- Parsimony analysis of phylogenetic trees (646 coding region sequences).
- Count the number of character changes mapped upon the MPT to determine the relative mutation rate.
- Calculate the α parameter using the method of Yang and Kumar (1996).

The Mutation Rate Spectrum

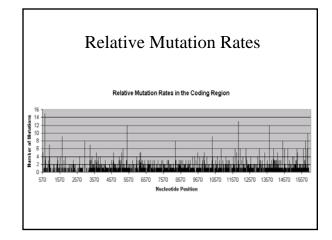
Length	Character	Gene	codon
15	709	12S	
15	709	12S	
13	11914	ND4	3
12	5460	ND2	1
12	13708	ND5	1
10	15924	tRNA(thr)	
9	1719	16S	
9	10398	ND3	1
8	3010	16S	
8	8251	COII	3
8	14470	ND6	3
8	15784	CYTB	3
7	961	12S	
7	3316	ND1	1
6	5237	ND2	3
6	10915	ND4	3
6	11719	ND4	3
6	12007	ND4	3
6	12346	ND5	1
6	13105	ND5	1
6	13928	ND5	2 3
6	14569	ND6	3
6	14766	C YTB	2
- 6	15301	CYTB	3

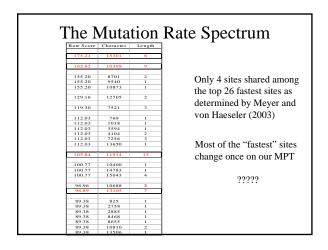
19/25 - Protein Coding

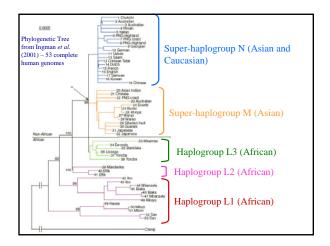
Synonymous sites = 11Non-synonymous = 8

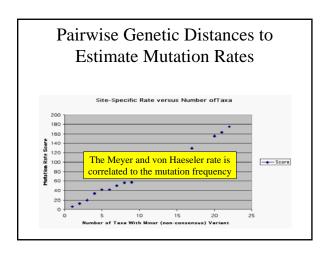
Results

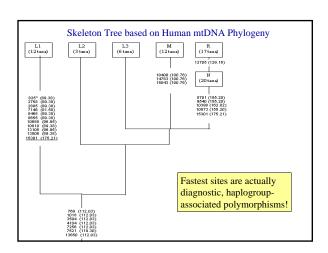
• Analysis of 646 coding region genomes.

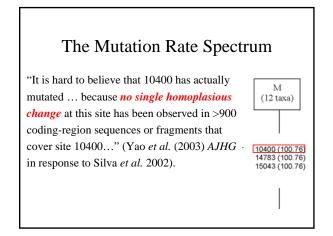

	Parsimony		N	1J
Data Set (# genomes)	Tree Length	α estimation	Tree Length	α estimation
Ingman HV1 (53)	144	0.2091	144	0.2081
Ingman Control Region (53)	273	0.0038	281	0.0036
Ingman Coding Region (53)	588	0.0075	588	0.0074
Ingman Full Data (53)	873	0.0050	876	0.0067
Total Coding Data (646)	2352	0.0086	2353	0.0083

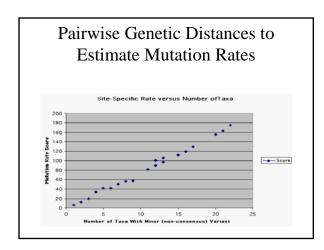

Meyer and von Haeseler – α estimation = 0.002 (full data)

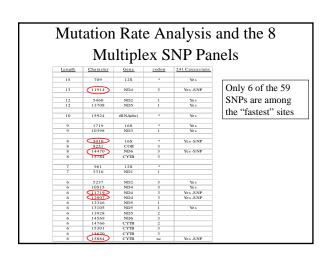

Extreme rate variation exists in the coding region


The Mutation Rate Spectrum


• How does our rate spectrum compare to the rate spectrum of sites determined by the method of Meyer and von Haeseler (2003)?







Mutation Rate Analysis and the 8 Multiplex SNP Panels codon 241 Caucas ians What about 13 11914 ND4 Yes-SNP These highly 12 5460 13708 ND2 ND5 Yes Yes polymorphic 15924 tR NA(thr) mutations? Yes-SNP Yes-SNP

Mutation Rate Analysis and the 8 Multiplex SNP Panels

• How much information is lost by focusing only on mutations not associated with a potential for changing the phenotype?

ALL shared polymorphisms (241 individuals) 59 "neutral" SNPs plus the AC indel discri

112 Haplotypes (77% of the total discrimination)

Additional SNP panels with fast, non-synonymous sites that vary widely in the population have been developed. These capture ~92% of the total discrimination in our total data.

Mutation Rate Analysis and the 8 Multiplex SNP Panels

• How much information is lost by focusing only on mutations not associated with a potential for changing the phenotype?

A Case Example

Skeletal remains - "H1" in the HV1/HV2 region.

Thought to belong to one of two individuals (Smith or Jones)

Family references for Smith and Jones were obtained.

 Smith Family
 Jones Family

 263 A-G
 263 A-G

 315.1 C
 315.1 C

Mutation Rate Analysis and the 8 Multiplex SNP Panels

• How much information is lost by focusing only on mutations not associated with a potential for changing the phenotype?

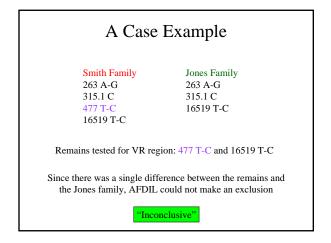
A Case Example

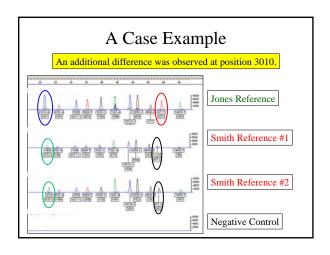
Skeletal remains - "H1" in the HV1/HV2 region.

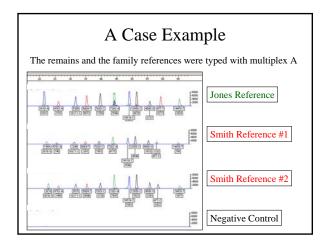
Thought to belong to one of two individuals (Smith or Jones)

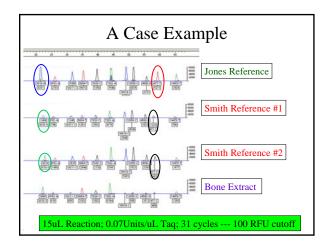
Family references for Smith and Jones were obtained.

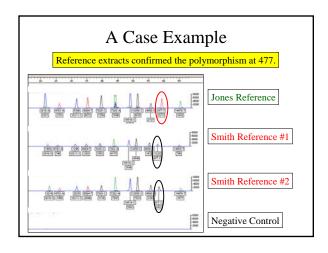
 Smith Family
 Jones Family

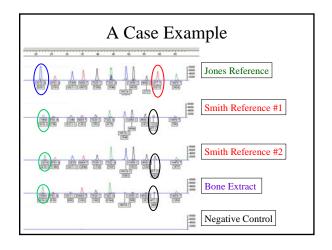

 263 A-G
 263 A-G


 315.1 C
 315.1 C


 477 T-C
 16519 T-C


 16519 T-C
 16519 T-C


Remains tested for VR region: 477 T-C and 16519 T-C



A Case Example

Smith Family **Skeletal Remains** Jones Family 263 A-G 263 A-G 263 A-G 315.1 C 315.1 C 315.1 C 477 T-C 477 T-C 16519 T-C 3010 A-G 3010 A-G 16519 T-C 16519 T-C

Remains – match exactly the Smith family, now 2 differences from the Jones family – can be excluded.

Summary

- Mutation rate analysis of the coding region using parsimony-evaluated phylogenetic trees revealed extreme rate variation using a relatively large data set.
- Parsimony distinguished fast sites from slow, haplogroup-associated polymorphisms (compared to Meyer and von Haeseler, 2003).

Summary

- Purpose Maximize Discrimination.
- A supplement to current HV1/HV2 testing.
- When the Forensic Scientist encounters a common type, select the most discriminating SNP panel.

Summary/Future Goals

- Future efforts to identify discriminatory SNPs to resolve common types in other populations

 will require whole genome sequencing.
- Evaluation of non-synonymous sites that are not associated with diseases and are useful for forensic discrimination.

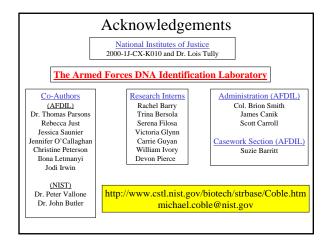
Summary

- We focused on sites that are not associated with the potential for phenotypic change.
- Most of the informative sites are rare, slow polymorphisms that are useful for discrimination in a particular common type.
- A few SNP sites may be useful for resolving common HV1/HV2 types from various backgrounds.

Publications

Michael D. Coble · Rebecca S. Just Jennifer E. O'Callaghan · Hona H. Letmanyi Christine T. Peterson · Jodi A. Irwin · Thomas J. Parson

Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians


IJLM (2004) **118:** 137-146.

Peter M. Vallone · Rebecca S. Just · Michael D. Coble John M. Butler · Thomas J. Parsons

A multiplex allele-specific primer extension assay for forensically informative SNPs distributed throughout the mitochondrial genome

IJLM (2004) **118:** 147- 157.

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

