

February 20, 2004

Reduc	tion in PCR Product Size
Locus TH01 FGA	Size Difference (relative to ABI kits) -105 bp -71 bp
CSF1PO	-191 bp
D21S11 TPOX	-33 bp -148 bp
D7S820	-117 bp
	Not as much size reduction as other STR loci

How C	los	se Can a Stable Pri STR Repeat	mer be Designed to the Region?
Locus		Distance 3'end from Repeat	Comment
CSF1PO	F	14	partial repeat just 5' of repeat
	R	6	
FGA	F	~	
	R	(23)	partial repeat just 3' of repeat
TH01	F		
	R	1	
TPOX	F	-4	
	R	5	
VWA	F	0	
	R	0	
D3S1358	F	-1	
	R	-1	
D5S818	F	4	
	R	-5	
D7S820	F	<u>A</u>	
	R	(65)	polyA stretch just 3' of repeat

STR Locus	GenBank Accession	GenBank Allele	Allele Range	Allele Spread
CSF1PO	X14720	12	6-16	40 bp
FGA	M64982	21	12.2-51.2	156 bp
TH01	D00269	9	3-14	44 bp
TPOX	M68651	11	5-14	36 bp
vWA	M25858	18	10-25	60 bp
D3S1358	NT_005997	18	8-20	48 bp
D5S818	AC008512	11	7-16	36 bp
D7S820	AC004848	13	5-15	40 bp
D8S1179	AF216671	13	7-19	48 bp
D13S317	AL353628	11	5-16	44 bp
D16S539	AC024591	11	5-15	40 br
D18S51	AP001534	18	7-27	80 bp
D21S11	AP000433	29	24-38.2	58 bp
Penta D	AP001752	13	2.2-17	73 bp
Penta E	AC027004	5	5-24	95 bp
D2S1338	AC010136	20	15-28	52 bp

Why go beyond CODIS loci

"STRs have proven to be highly successful [for mass disasters] in the past e.g. Waco disaster and various air disasters. However, even if the DNA is high quality there are occasions when there are insufficient family members available to achieve a high level of confidence with an association."

Gill, P., Werrett, D.J., Budowle, B. and Guerrieri, R. (2004) An assessment of whether SNPs will replace STRs in national DNA databases-Joint considerations of the DNA working group of the European Network of Forensis Science Institutes (ENFS) and the Scientific Working Group on DNA Analysis Methods (SWGDAM). Science&Justice, 44(1), in press.

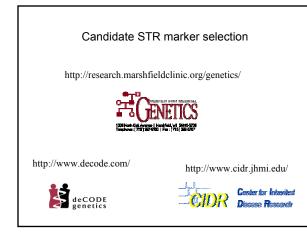
Why go beyond CODIS loci

"To achieve this purpose, either new STRs could be developed, or alternatively, existing STRs could be supplemented with a SNP panel."

"There also efforts for modifying existing STR panels by decreasing the size amplicons by designing new primers."

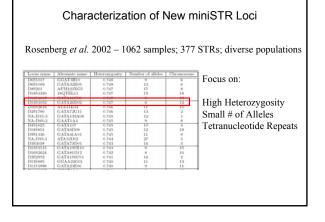
Gill, P., Werrett, D.J., Budowle, B. and Guerrieri, R. (2004) An assessment of whether SNPs will replace STRs in national DNA databases-Joint considerations of the DNA working group of the European Network of Forensis Csicnee hstltutes (ENFS) and the Scientific Working Group on DNA Analysis Methods (SWGDAM). Science&Justice, 44(1), in press.

Why go beyond CODIS loci

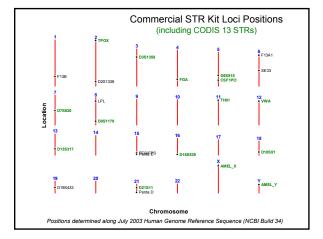

- Desirable to have markers unlinked from CODIS loci (different chromosomes) for some applications
- Small size ranges to aid amplification from degraded DNA samples

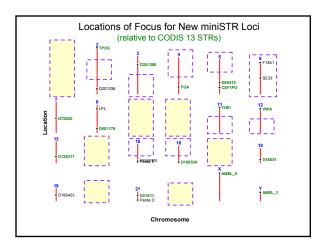
Characterization of New miniSTR Loci

- Candidate STR marker selection
- · Chromosomal locations and marker characteristics
- · PCR primer design
- · Initial testing results
- · Population testing
- · Allelic ladder construction
- · Miniplex assay performance


Characterization of New miniSTR Loci

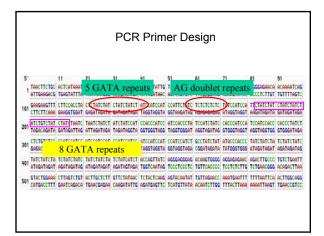
- Candidate STR marker selection
- Chromosomal locations and marker characteristics
- PCR primer design
- Initial testing results
- Population testing
- Allelic ladder construction
- Miniplex assay performance


	SCIENCE VOL 298 20 DECEMBER 2002
	Genetic Structure
	of Human Populations
	Noah A. Rosenberg, ¹⁺ Jonathan K. Pritchard, ² James L. Weber, ³ Howard M. Cann, ⁴ Kenneth K. Kidd, ³ Lev A. Zhivotovsky, ⁶ Marcus W. Feldman ²
I: Am J Phys Ar	affropol. 2003 Nov;122(3):259-68. Redain Anders, Links
A PROPERTY OF A	tion of human evolutionary tree using polymorphic autosomal microsatellites.
	soor A, Ismail M, Khaliq S, Mohyuddin A, Hameed A, Mazhar K, Rehman S, Siddiqi S, Papaioannou M, valli-Sforza I, L., Mehdi SQ.


Rosent	oerg et al.	2002 - 1	062 sampl	les; 377	STRs; diverse population
Locus name D6S1017	Alternate name CCAT3H10	Heterozygosity 0.748	Number of alleles	Chromosome	Focus on:
D681017 D681009	GGAT3H10 GATA32B03	0.748	13	2	rocus on.
D88261	AFM123XG5	0.745	13		
D18S1390	18QTEL11	0.747	15	18	
D13S1807	GATA11C08	0.747	9	13	
D1251052	GATA26D02	0.747	8	12	High Heterozygosity
D1682616	ATA41E04	0.746	11	16	
D2S1780	GATA72G11	0.746	13	2	Small # of Alleles
NA-D18-3 NA-D88-2	GATA133A08 GAAT1A4	0.745	12	1	Sman # Of Ancies
D481625	GATA107	0.745	9	8	Totronualaatida Danaat
D18S851	GATA6D09	0.745	12	18	Tetranucleotide Repeat
D8S1136	GATA41A01	0.745	11	8	
NA-D58-1	ATA52D02	0.744	27	5	
D353038	GATA73D01	0.743	14	3	
D1581515	GATA197B10	0.743	9	15	1
D16S2624 D2S2972	GATA81D12 GATA176C01	0.742	8 14	16	
D13S895	GGAA22C01	0.741	14	13	
D1151998	CATA23E06	0.740	9	11	
		0.140			4

Characterization of New miniSTR Loci

- Candidate STR marker selection
- · Chromosomal locations and marker characteristics
- PCR primer design
- · Initial testing results
- · Population testing
- Allelic ladder construction
- · Miniplex assay performance

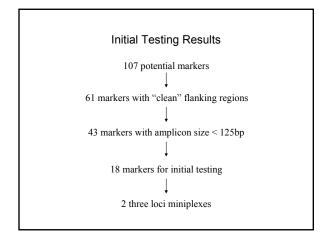


Characterization of New miniSTR Loci

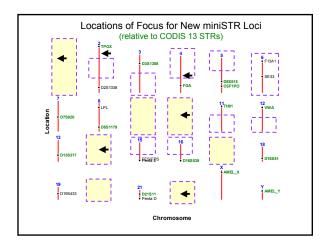
- Candidate STR marker selection
- · Chromosomal locations and marker characteristics
- PCR primer design
- · Initial testing results
- · Population testing
- Allelic ladder construction
- · Miniplex assay performance

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi/ Primer3 intrafiance init primer 3 form DNA segmence (see =>) intrafiance init more emparise biow (%=2), wing of ACOTNeggin = other letters treated as N = sambers and black ignored). FASTA format dk. Please Seat anderinable sequence (vector, ALUs, LNUs, etc.) or use a Mirgrimma Library (repret library). [VD22] init and that ignored is a samber and black ignored). FASTA format dk. Please * Pick ldptrimer or use left primer * Pick ldptriming in the other (%=2) in the other is a samber and in the init primer or use right primer or use right primer or use right primer infant de samber and initial bio initial bio identify your output. Pick Initian I Please Form * Pick ldptrimer infant is a samber and that is a samber and that the coreax of the other samber and that the coreax of the other samber and that the coreax of the coreax of the other samber and that the coreax of the other samber and the infant the decored in the other coreax of the other samber and the other samber in the the coreax of the other samber infant the other coreax of the other other samber infant the other coreax of the other sam				[.] Design	
F ITHETS is present to a DNA sequence (see		http://	frodo.wi.mit.edu/cgi	i-bin/primer3/prime	er3.cgi/
Some source sequence below (5x-37, string of ACCITNeggs - other bettern treated as N - mathers and blacks ignored). FASTA format ek. Please Acoust underindels sequence (vector, ALUs, LINEs, etc.) or use a Minjerining Lineary (open Lineary). FASTA Void underindels sequence (vector, ALUs, LINEs, etc.) or use a Minjerining Lineary (open Lineary). FASTA Pick http://www.com/entropy.com/entropy. Pick http://www.com/entropy.com/entropy. Pick http://www.com/entropy.	Primer3			dischalmer	source.code
Contained a sequence (vector, ALUs, LINEs, etc.) or use a Minjerining Library (repeat library), 1924E Pick left primer or use left primer Pick left primer or use left primer or use left primer Pick left primer or use left primer left primer Pick left primer or pick left primer or use left primer Pick left primer or pick left primer or pick	pick primers from	a DNA sequence (or	ee 🚥)	castions	
Fick left primer or use left primer Fick bybridization probe (internal Pick indit primer or use left primer Pick bybridization probe (internal Pick bybr					d). FASTA format ok. Please
clow. oligo b of owe oligo below. below (5%-57 on opposite arrend). PAS/Themes ResetForm regence Mi. E.g. 60.2 requires primers to arrowed the 3 haves at positions 50 and 51. Or mark the superstart in a first in a first in the primer mark the superstart in the su	-out undesirable	sequence (vector, A	LUs, LINEs, etc.) or use a Mispriming L	ibrary (repeat library); NONE	2
class. oligo) or use oligo below. below (5~-9" on opposite strand). Piss Frames Piss frame control of the strain opposite strand). Piss Frames Piss frame control of the strain opposite strand). Piss Frames Piss frame control of the strain opposite strand). Piss Frames Piss frame control of the strain opposite strand). Piss Frames Piss frame control of the strain opposite strand). Refs. Est 50.2 require strain on annould the "losses at positions 50 and 51. Or mark the sources" control of the Thases straining at 01 and 04.2 haves at 63. Or mark the sources segments with a control segment segment and segment segment and segment segment segment and segment segment segment and segment segment segment and segment segment segment segment segment and segment segments		- 556 - 1742 - 1844 -		and the state of the	14
class. oligo) or use oligo below. below (5~-9" on opposite strand). Piss Frames Piss frame control of the strain opposite strand). Piss Frames Piss frame control of the strain opposite strand). Piss Frames Piss frame control of the strain opposite strand). Piss Frames Piss frame control of the strain opposite strand). Piss Frames Piss frame control of the strain opposite strand). Refs. Est 50.2 require strain on annould the "losses at positions 50 and 51. Or mark the sources" control of the Thases straining at 01 and 04.2 haves at 63. Or mark the sources segments with a control segment segment and segment segment and segment segment segment and segment segment segment and segment segment segment and segment segment segment segment segment and segment segments					
elsee. elsey or use oligo below. below (5-9' on opposite armed). Postmenes Pestimenes Pe					
clow. oligo) or use oligo below. below (5%-57 on opposite armed). Pederment II. A string to identify your output. Grannes Lit. E.g. 60.2 require primer to narrowed the 3 haves at positions 50 and 51. Or mark the source of grants is used to a string to identify your output. Cartantes Lit. E.g. 60.2 require primer to narrowed the 3 haves at positions 50 and 51. Or mark the source of grants is used to a string the identify operation of the 3 haves at positions 40 and 51. Or mark the source of the 3 have set string at 61 and 62 haves at 63. Or mark the source requires with a water set, and the 3 haves at 50. Or mark the source requires with a water set, and the 3 haves at 50. Or mark the source of the 3 haves at 50. Or mark the source requires with a water set, and the 3 haves at 50. Or mark the source of the 3 haves at 50. Or mark the source requires with a water set, and the 3 haves at 50. Or mark the source sequence with a water set, and the 3 haves at 50. Or mark the source sequence with a water set, and the 50. OccorrONT. In the fold primers in the creat CCCC. Product Size Ranges [10-251 01:25-00 01:25:00 001-700 012-150 01:1000 Tick here to specify the nin, opt, and max predict tizes only if you absolutely mant. Using them is too slow (and too computationally intensive the or arxet).					
Schow oligo or use oligo below. below (5~5° on opposite armot). Performant Resid from Is dring to identify your output icepants: M. E.g. 90.2 require primer to nervoul the 3 have at position 50 and 51. Or mark the source of primers in the 7 have strong at 01 and 62. How are 0.0 control of the 3 have at position 50 and 51. Or mark the source of the 1 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 01 and 62. How are 0.0 control of the 3 have strong at 0.0 control of the 1.0					-1
Below. oligot or use oligo below. below (5~57 on opposite armod). Pers Parmer. ResetForm ResetForm ResetForm E.g. 90.2 requires primers to arround the 2 hores at positions 50 and 51. Or mark the supers to arround the 2 hores at positions 50 and 51. Or mark the supers to any opposite armody. Directs: E.g. 90.2 requires primers to arround the 2 hores at positions 50 and 51. Or mark the supers to any opposite armody. Scholed Region: E.g. 401.7 643. forbids relations of primers in the 7 hores storing at 61 and the 3 hores at 68. Or mark the supers regeness with 4 mark e.g. a.ATCFCOCCTOCAT. Include primers in the central CCCC. Scholed Region: E.g. 401.7 643. forbids in store sequences with 4 mark e.g. a.g. ATCFCOCCTOCAT. To find a primers in the central CCCC. Product Size Roots S11.400 million 10.500 503.400 602.700 701.400 million 10.500 503.1000 Click here to precisif the min.eqt, and max predict sizes only if you absolutely must. Using them is too slow (and too comparationally intensive for or arewer).					1
Below. oligot or use oligo below. below (5~57 on opposite armod). Pers Parmer. ResetForm ResetForm ResetForm E.g. 90.2 requires primers to arround the 2 hores at positions 50 and 51. Or mark the supers to arround the 2 hores at positions 50 and 51. Or mark the supers to any opposite armody. Directs: E.g. 90.2 requires primers to arround the 2 hores at positions 50 and 51. Or mark the supers to any opposite armody. Scholed Region: E.g. 401.7 643. forbids relations of primers in the 7 hores storing at 61 and the 3 hores at 68. Or mark the supers regeness with 4 mark e.g. a.ATCFCOCCTOCAT. Include primers in the central CCCC. Scholed Region: E.g. 401.7 643. forbids in store sequences with 4 mark e.g. a.g. ATCFCOCCTOCAT. To find a primers in the central CCCC. Product Size Roots S11.400 million 10.500 503.400 602.700 701.400 million 10.500 503.1000 Click here to precisif the min.eqt, and max predict sizes only if you absolutely must. Using them is too slow (and too comparationally intensive for or arewer).	R. Dick left miner	e or our left primer.	T Bick hebridization probe (internal	D Bick sight asimus as use sight asi	
Product Form Reset Form Sequence 2.M. A string to identify your output. Sequence 2.M. E.g. 9.0.2 requires primer to surround the 2 bases at positions 50 and 51. Or mark the source sequences with (and) is aACTCICCCCUTCATmeans that primers must think the central CCCC E.g. 601.7 69.3 forbids sections of primers in the 7 bases starting at 01 and the 3 bases at 48. Or mark the source sequences with 4 mark - e.g. ACTC-CCCCTCAT. Starting the 1 base at 48. Or mark the source sequences with 4 mark - e.g. ACTC-CCCCTCAT. Starting the starting at 01 and the 3 bases at 48. Or mark the source sequences with 4 mark - e.g. ACTC-CCCCTCAT. Starting there is the secure CCCC. Product Size Romers 108-200 108-200 301-600 503-600 602-700 701-150 851-1000 Click here to specify the min.opt, and max product sizes only if you absolutely munt. Using them is too slow (and too computationally intensive for conserver).		t of min tem beinner.			
Image: Second					
Segmence III. A string to identify your output. Directive primers to surveyed the 2 bases at positions 50 and 51. Or mark the gogges might be at the surveyed of the primers must flash the central COCC surveyed by the primers must flash the central COCC E.g. 401.7 693.5 forbids relations of primers in the Tases starting at 401 and 62. Bases at 68. Or mark the gogges expansion of the surveyed by the primers in the central COCC E.g. 401.7 693.5 forbids relations of primers in the Tases starting at 401 and 62. Bases at 68. Or mark the gogges expansion with a surveyed were supported by the primers in the central COCC E.g. 401.7 693.5 forbids relations of primers in the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central COCC E.g. 401.7 693.5 forbids relations of the central cocce expected for the start of the central COCC E.g. 401.7 693.5 forbids relations of the central cocce expected for the start of the central COCC E.g. 401.7 forbids relations of the central cocce expected for the start of the central cocce expected for the start of the central cocce expected for the start of the central cocce expected forberend to the central cocce expected forberend to the central cocce					
Dirgett: E.g. 50.2 register primer to surround the 2 bases at position 50 and 51. Or much the source regeneses with (mol) e.gATCPCOCCTICAT. ensurements the primers much that the control CCCC E.g. 60.1, 763.3 forbids relations to primers in the Thates starting at 60 and the 3 bases at 63. Or much the source regeneses with a source sequences with a source sequence sequenc	(restatement)	man and)[) [3
Digitati i regenere with [and] : e.gATCT[CCCCT[TATeven that primers must fluck the central CCC E.g. 401, 743, for the isotronic origination for the section of the isotronic origination for the section of the isotronic origination origination origination origination origination origination of the isotronic origination of the isotronic origination o	and the second sec	Reset Form		1	
Excluded Region: Exclude Region: Ex	- Treese sector	Reset Form			
Excluded.Region:	Sequence Id:	Resit Form	E.g. 50,2 requires primers to su	around the 2 bases at positions 50 and	
CCCC. Product Size Ranger [150-250 100-200 301-400 401-500 501-600 601-700 701-650 651-1000 Click here to precify the min.opt, and max product sizes only if you absolutely must. Using them is too slow (and too computationally intensive for or server).	Sequence Id:	Resit Form	E.g. 50,2 requires primers to su sequence with [and]: e.gA	arround the 2 bases at positions 50 and TCT[CCCC]TCAT means that prime	s must flank the central CCCO
Product Size Ranges [150-250 100-200 301+60 401-500 501-600 601-700 701-650 651-1000 Click here to specify the min, spt, and max product sizes only if you absolutely munt. Using them is too slow (and too computationally intensive for our servers).	Sequence Id: Targets:	[E.g. 50,2 requires primers to su sequence with [and]: e.gA' E.g. 401,7 68,3 forbide selection	arround the 2 bases at positions 50 and TCT[CCCC]TCAT means that prime on of primers in the 7 bases starting at	s must flank the central CCC0 101 and the 3 bases at 68. Or
Click here to specify the min, opt, and max product sizes only if you absolutely must. Using them is too slow (and too computationally intensive for server).	Sequence Id: Targets:	[E.g. 50,2 requires primers to su sequence with [and]: e.gA' E.g. 401,7 68,3 forbids selection mark the source sequence with	arround the 2 bases at positions 50 and TCT[CCCC]TCAT means that prime on of primers in the 7 bases starting at	s must flank the central CCC0 101 and the 3 bases at 68. Or
our server).	Sequence Id; Targets; Excluded Regions	[[E.g. 50,2 requires primers to su sequence with [and]: e.gA' E.g. 401,7 68,3 forbids selectin mark the <u>source sequence</u> with CCCC.	arround the 2 bases at positions 50 and TCT[CCCC]TCAT means that prime on of primers in the 7 bases starting at < and >> e.gATCT <cccc>TCAT.</cccc>	s must flank the central CCC0 101 and the 3 bases at 68. Or
	Sequence Id; Targets; Excluded Regions	[[E.g. 50,2 requires primers to su sequence with [and]: e.gA' E.g. 401,7 68,3 forbids selectin mark the <u>source sequence</u> with CCCC.	arround the 2 bases at positions 50 and TCT[CCCC]TCAT means that prime on of primers in the 7 bases starting at < and >> e.gATCT <cccc>TCAT.</cccc>	s must flank the central CCC0 101 and the 3 bases at 68. Or
Number To Dataset A May P Stability D 0	Sequence Id; Targets; Excluded Regions Product Size J	Ringes [150-250 10	E.g. 50,2 requires primers to su sequence with [and]: e.gA' E.g. 401,7 68,3 forbids selectin mark the poper sequence with CCCC. 10-308 301-400 401-500 501-600 60	arroand the 2 bases at positions 50 and TCT[CCCC]TCAT means that primer on of primers in the 7 bases starting at < and >: e.gATCT <cccc>TCAT. 01-700 701-850 851-1000</cccc>	s must flank the central CCC0 401 and the 3 bases at 68. Or forbids primers in the centra
	Sequence Id: Targets: Excluded Regions Product Size J Click here to speci	Ringes [150-250 10	E.g. 50,2 requires primers to su sequence with [and]: e.gA' E.g. 401,7 68,3 forbids selectin mark the poper sequence with CCCC. 10-308 301-400 401-500 501-600 60	arroand the 2 bases at positions 50 and TCT[CCCC]TCAT means that primer on of primers in the 7 bases starting at < and >: e.gATCT <cccc>TCAT. 01-700 701-850 851-1000</cccc>	s must flank the central CCC0 401 and the 3 bases at 68. Or forbids primers in the centra

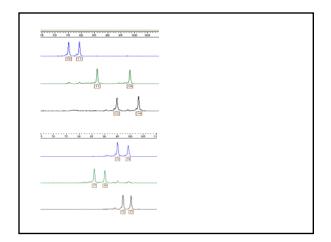
5'		11	21	31	41	51	61	71	81	91
1	TARCTTCTGC ATTGRAGACS	ACTCATAAAT TGAGTATTTA	ATTATTTCCC TRATARAGGG	TGTCTTTGCT ACAGARACGA	TRAGCTATTG ATTCGATARC	TCRGTCRCRG RGTCRGTGTC	ARGCTCCATC TTCGAGGTAG	TTTTCATATG RARAGTATAC	TGSGAGAACA ACCCTCTTGT	ACAAAATCAG
101	GARGARGTTT	CTTCCACCTA GRAGGTGGAT	CTCTATCTAT GRGATAGATA		ATCCATCCAT TAGGTAGGTA	CCATTCTATC GGTAAGATAG	TCTCTCTCTC RGRGRGRGRG	TATCCATCCA ATAGGTAGGT	TICTATCTAT REGATEGATE	CTATCTATCT
201	ATCTGTCTAT TAGACAGATA	CTATC TAATC GATAGATTAG	TARTCTATCT ATTAGATAGA	ATCTATCCAT TAGATAGGTA		ATCCACCCTR TAGGTGGGAT			TCCATCCACC AGGTAGGTGG	CACCCTATC
381	CTCTCTCTCTC GRGRC	8 GAT	А гере			CCATCCATCT GGTAGGTAGA		ATACCCACCC TATEGETEES	TATCTATCTA ATAGATAGAT	TCTATCTATC AGATAGATAG
401	TATCTATCTA ATAGATAGAT	TCTATCTATC AGATAGATAG	TATCTATCTA	TCTATCATCT	ACCAGTTATC TGGTCAATAG				AGACTTGCCC TCTGAACGGG	TETCTERAT
581	GTACTEGAAA CATGACCTTT	CTTRETCTET GRATCAGACA	ACTTECTCTT TERACEAGAA	GTTCTATAAC CRAGATATTG					TTTTRATTCR RARATTRAGT	

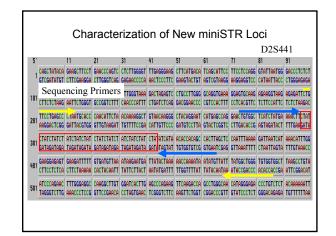


				PCR Primer Design					D2S441		
5'		11	21	31	41	51	61	71	81	91	
1	CAGCTATACA GTCGATATGT	GAAGCTTCCT CTTCGAAGGA	GAACCCAGTC CTTGGGTCAG	CTCTTGGGGT Gagaacccca	TTGAGGGAAG AACTCCCTTC					GACCCTCTC CTGGGAGAG	
101	GAAGAGATTC CTTCTCTAAG	TTAAGACCCA Aattctgggt	CGGCCAGAAA GCCGGTCTTT	GTTGGGTAAA Caacccattt	GACTAGAGTC CTGATCTCAG		GCAGGTGAAA Cgtccacttt	GGAGTGCAAG CCTCACGTTC		AGAGATTCT TCTCTAAGA	
201	TTCCTGAGCC AAGGACTCGG	CTAATGCACC Gattacgtgg	CAACATTCTA GTTGTAAGAT	ACAAAAGGCT Tgttttccga	GTAACAAGGG Cattgttccc		CATGAGCCAG Gtactcggtc		TCATCTATGA Agtagatact	AAACTTCTA TTTGAAGAT	
301	CTATCTATCT Gatagataga				CTATATCATA Gatatagtat			CAATTTAAAA Gttaaatttt	GATTAATCAT Ctaattagta		
401	GAAGGAGAGT CTTCCTCTCA	GAAGATTTTT Cttctaaaaa	GTGATGTTAA Cactacaatt	ATAAGAATGA Tattcttact	TTATACTAAA Aatatgattt		ATATGTTATT Tatacaataa		TGTGGTGGCT Acaccaccga		
501	ATCCCAGAAC TAGGGTCTTG	TTTGGGAGGC AAACCCTCCG	CAAGGCTTGT GTTCCGAACA	GGATCACTTG CCTAGTGAAC	AGCCCAGAAG TCGGGTCTTC		GCCTGGGCAA CGGACCCGTT			ACAAAAAAT Tgttttta	

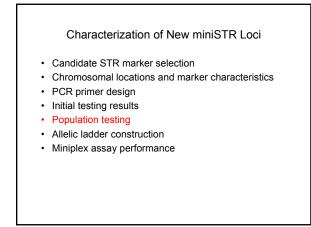

				PCR	Prime	er Des	sign		D2S4	41
5'		11	21	31	41	51	61	71	81	91
1	CAGCTATACA GTCGATATGT	GAAGCTTCCT CTTCGAAGGA	GAACCCAGTC CTTGGGTCAG	CTCTTGGGGT Gagaacccca	TTGAGGGAAG Aactcccttc		TCAGCATTCC AgtCgtaagg	TTCCTCCAGG AAGGAGGTCC	GTATTAATGG Cataattacc	
101	GAAGAGATTC Cttctctaag			otteeetooo <mark>op A</mark>			ACAGETGAAA Actit		AGAAGGTAAG TCTTCCATTC	
201	TTCCTGAGCC AAGGACTCGG		v00v011v10	NYDDDDWWY	MINNYNNWW	VINVNMNNI	GTACTCGGTC		TCATCTATGA Agtagatact	
301							CACTTAGCTC GTGAATCGAG			
401	GAAGGAGAGT CTTCCTCTCA	GAAGATTTTT Cttctaaaaa	GTGATGTTAA Cactacaatt				ATATGTTATT Tatacaataa			TAAGCCTGTI Attcggaca
501	ATCCCAGAAC Tagggtcttg	TTTGGGAGGC AAACCCTCCG	CAAGGCTTGT GTTCCGAACA	GGATCACTTG CCTAGTGAAC			GCCTGGGCAA CGGACCCGTT			ACAAAAAAT Tgtttttai

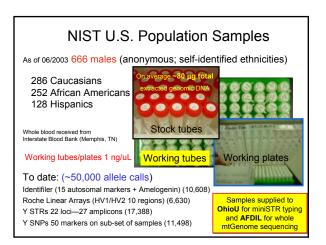
Characterization of New miniSTR Loci Candidate STR marker selection Chromosomal locations and marker characteristics PCR primer design Initial testing results Population testing Allelic ladder construction Miniplex assay performance

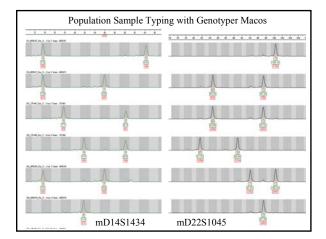

M.D. Coble Talk at AAFS, Dallas, TX

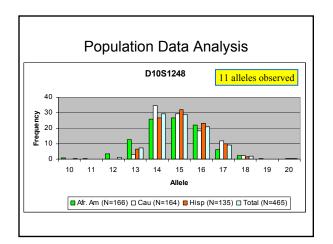


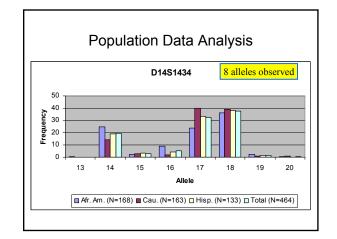

Initial Testing Results	
Miniplex01- mD10S1248 - FAM mD14S1434 - VIC mD22S1045 - NED	
Miniplex02- mD4S2364 - FAM mD2S441 - VIC mD1S1677 - NED	

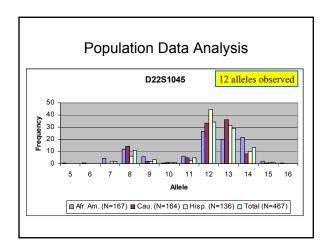


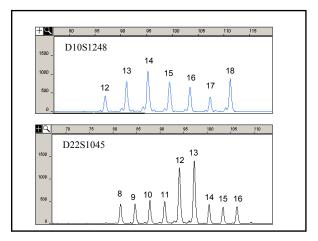

0					miniSTR		
		Allele Size		Ref.	Primer distance	Amplicon	1
Marker Name	Het	Range	(Motif)	Repeat	from repeat	Size	
D10S1248	0.77	20 bp	TETRA	13	1	102	
GGAA23C05N		00	GGAA		0		1
D1461424	0.72	20 hn	TETDA	10	1	00	Miniplex01
GATA168F06	0.72	20 DP	GATA	10	0	00	
	0.77	18 bp		13		105	
A1A37D06			AIA		6		
D1S1677	0.74	35 bp	TETRA	15	0	103	
GGAA22G10N			GGAA		0		
D2S441	0 74	18 bn	TETRA	12	0	92	Miniplex02
GATA8F03	0.74	op	GATA	12	0	52	minpiex
				_			
D4S2364	0.64	18 bp	TETRA	7	2	78	
	D10S1248 GGA23C05N D14S1434 GATA168F06 D22S1045 ATA37D06 D1S1677 GGAA22G10N D2S441 GATA8F03	D1051248 0.77 GGAA23C05N 0.72 D14S1434 0.72 GATA168F06 0.77 ATA37D06 0.74 GGAA22G10N 0.74 D2S441 0.74 GATA8F03 0.74	Marker Name Het Rance D1051248 0.77 20 bp GGAA23C05N 0.77 20 bp D1451434 0.72 20 bp GATA168F06 0.77 18 bp D1551545 0.77 18 bp GGAA23C010N 0.74 35 bp GGAA23C010N 0.74 18 bp D25441 0.74 18 bp	Marker Name Hat Rance (Motif) D1051248 0.77 20 bp TETRA GGAA23C05N 0.72 20 bp TETRA GGAA23C05N 0.72 20 bp TETRA GATA168F06 0.72 20 bp TETRA GATA37D06 0.77 18 bp TRI ATA37D06 0.74 35 bp TETRA GGAA22G10N 0.74 18 bp TETRA GATA8F03 0.74 18 bp TETRA GATA8F03 0.74 18 bp TETRA	Markar Nama Hat Bance (Motif) Raseat D1081248 0.77 20 bp TETRA 13 GGAA23005N GGAA GGAA GGAA D1481434 0.72 20 bp TETRA 10 GATA168F06 0.72 20 bp TETRA 10 GATA158F06 0.72 18 bp TRI 13 ATA37006 0.74 35 bp TETRA 15 GGAA2GTON 0.74 18 bp TETRA 15 D28441 0.74 18 bp TETRA 12 GATA8F03 0.74 18 bp TETRA 12	Marker Name Het Ranse /Motifi Repeat from repeat D1051248 0.77 20 bp TETRA 13 0 GGAA32005N 0.72 20 bp TETRA 13 0 D1451434 0.72 20 bp TETRA 10 1 GATA168F06 0.72 20 bp TETRA 10 1 GATA168F06 0.72 20 bp TETRA 10 1 GATA169F06 0.77 18 bp TRI 13 3 ATA37006 74 35 bp TETRA 15 0 GGAA22GT00 0.74 18 bp TETRA 12 0 D2S411 0.74 18 bp TETRA 12 0 GATA8F03 0 GATA 0 0 0	Markar Nama Hat Banace /Motifi Repeat from repeat Size D1051248 0.77 20 bp TETRA 13 1 102 GGAA32005N 0.77 20 bp TETRA 13 0 102 D16151248 0.77 20 bp TETRA 10 1 88 GATA168F06 0.77 20 bp TETRA 10 1 88 D2551045 0.77 18 bp TRI 13 3 105 ATA37006 74 35 bp TETRA 15 0 0 D25410 0.74 18 bp TETRA 12 0 92 GATA8F03 0.74 18 bp TETRA 12 0 92





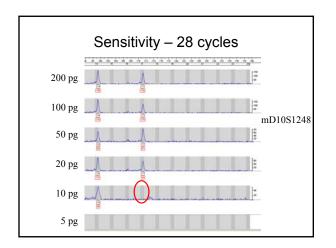


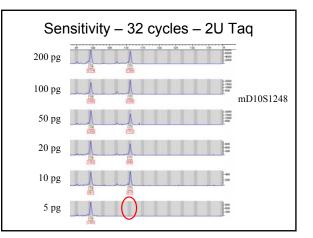


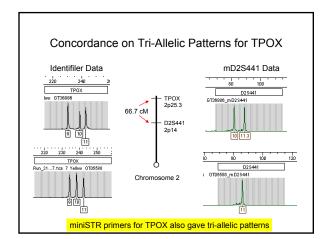


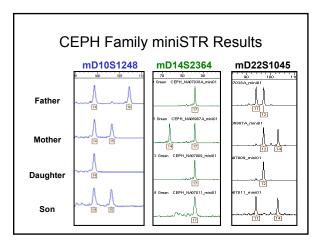
Loci	Heterozygosity	
D18S51	0.914	
FGA	0.886	
D21S1338	0.871	N = 140 Hispanics (Identifiler)
D7S820	0.864	,
VWA	0.850	
D2S1338	0.843	N = 135 Hispanics (Mini01)
D13S317	0.843	1
D16S539	0.793	
D8S1179	0.786	
D19S433	0.764	
THO1	0.764	
D3S1358	0.757	
CSF1PO	0.743	
D10S1248	0.733	
D5S818	0.729	
D22S1045	0.721	
TPOX	0.679	
D14S1434	0.662	

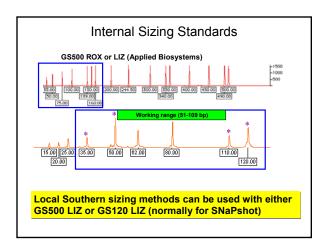
Characterization of New miniSTR Loci

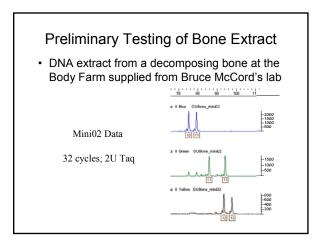

- Candidate STR marker selection
- · Chromosomal locations and marker characteristics
- PCR primer design
- · Initial testing results
- · Population testing
- Allelic ladder construction
- · Miniplex assay performance



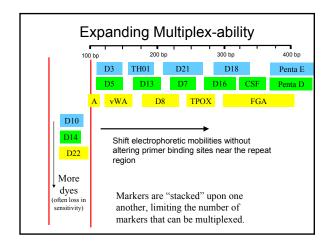

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
11 Highwat peak at 97.00 t 0.00 t	cros for analysis
12 Highest peak at 91.00 t 0.00 bp in blue Dav 13 Highest peak at 91.00 t 0.00 bp in blue 100 bp in blue 14 Highest peak at 100.00 t 0.00 bp in blue 100 bp in blue 15 Highest peak at 100.00 t 0.00 bp in blue 100 bp in blue 15 Highest peak at 100.00 t 0.00 bp in blue 100 bp in blue 17 Highest peak at 111.00 t 0.00 bp in blue 100 bp in blue 19 Highest peak at 112.00 t 0.00 bp in blue 100 bp in green 19 Highest peak at 72.00 t 1.00 bp in green 100 bp in green 14 Highest peak at 92.00 t 1.00 bp in green 100 bp in green 18 Highest peak at 97.00 t 1.00 bp in green 100 bp in green 19 Highest peak at 97.00 t 1.00 bp in green 100 bp in green 19 Highest peak at 97.00 t 1.00 bp in green 100 bp in green 19 Highest peak at 97.00 t 1.00 bp in green 100 bp in green 19 Highest peak at 97.00 t 1.00 bp in green 100 bp in green <	cros for unarysis
13 Highest peak at 95.00 ± 0.00 bp in blue 14 Highest peak at 95.00 ± 0.00 bp in blue 15 Highest peak at 107.00 ± 0.00 bp in blue 16 Highest peak at 110.00 ± 0.00 bp in blue 17 Highest peak at 110.00 ± 0.00 bp in blue 18 Highest peak at 110.00 ± 0.00 bp in blue 19 Highest peak at 110.00 ± 0.00 bp in blue 10 Highest peak at 110.00 ± 0.00 bp in blue 10 Highest peak at 120.00 ± 0.00 bp in blue 10 Highest peak at 120.00 ± 0.00 bp in green 13 Highest peak at 74.30 ± 1.00 bp in green 14 Highest peak at 90.00 ± 1.00 bp in green 14 Highest peak at 90.00 ± 1.00 bp in green 17 Highest peak at 90.00 ± 1.00 bp in green 18 Highest peak at 90.00 ± 1.00 bp in green 19 Highest peak at 90.00 ± 1.00 bp in green 10 Highest peak at 90.00 ± 1.00 bp in green 10 Highest peak at 90.00 ± 1.00 bp in green 10 Highest peak at 90.00 ± 1.00 bp in green 10 Highest peak at 90.00 ± 1.00 bp in green 10 Highest peak at 90.00 ± 1.00 bp in green	e been developed
14 Highest peak at 99.0 f 0.0 f </td <td>e been developed</td>	e been developed
15 Highest peak at 100.0 t 0.0 to bit bit 19 Highest peak at 100.0 t 0.0 to bit bit 19 Highest peak at 110.0 t 0.0 to bit bit 18 Highest peak at 110.0 t 0.0 to bit bit 19 Highest peak at 110.0 t 0.0 to bit bit 20 Highest peak at 121.0 t 0.0 to bit bit 21 Highest peak at 121.0 t 1.00 to t pit 24 Highest peak at 72.0 t 1.00 to t pit green 14 Highest peak at 74.0 t 1.00 to t pit green 15 Highest peak at 97.0 t 1.00 to t pit green 14 Highest peak at 99.0 t 1.00 to t pit green 17 Highest peak at 99.0 t 1.00 to t green green 10 Highest peak at 99.0 t 1.00 to t green green 10 Highest peak at 99.0 t 1.00 to t green green 10 Highest peak at 99.0 t 1.00	
16 Highest peak at 107:00 ± 0.60 bp in blue 17 Highest peak at 115:00 ± 0.60 bp in blue 18 Highest peak at 115:00 ± 0.60 bp in blue 19 Highest peak at 115:00 ± 0.60 bp in blue 10 Highest peak at 123:00 ± 0.60 bp in blue 10 Highest peak at 123:00 ± 0.60 bp in blue 14 Highest peak at 70:40 ± 1.00 bp in green 14 Highest peak at 70:40 ± 1.00 bp in green 15 Highest peak at 70:20 ± 1.00 bp in green 16 Highest peak at 80:00 ± 1.00 bp in green 17 Highest peak at 90:00 ± 1.00 bp in green 18 Highest peak at 90:00 ± 1.00 bp in green 19 Highest peak at 97:70 ± 1.00 bp in green 20 Highest peak at 77:70 ± 1.00 bp in green 21 Highest peak at 77:70 ± 1.00 bp in green 220 Highest peak at 97:70 ± 1.00 bp in green 21 Highest peak at 97:70 ± 1.00 bp in green 220 Highest peak at 97:50 ± 1.00 bp in green	
17 Highest peak at 111.00 ± 0.60 bp in blue 18 Highest peak at 111.00 ± 0.60 bp in blue 10 Highest peak at 115.00 ± 0.60 bp in blue 10 Highest peak at 115.00 ± 0.60 bp in blue 10 Highest peak at 123.00 ± 0.60 bp in blue 13 Highest peak at 70.00 ± 1.00 bp in green 14 Highest peak at 70.20 ± 1.00 bp in green 15 Highest peak at 70.20 ± 1.00 bp in green 16 Highest peak at 70.20 ± 1.00 bp in green 17 Highest peak at 70.00 ± 1.00 bp in green 18 Highest peak at 90.00 ± 1.00 bp in green 19 Highest peak at 90.00 ± 1.00 bp in green 20 Highest peak at 90.00 ± 1.00 bp in green 21 Highest peak at 77.50 ± 1.00 bp in green 220 Highest peak at 77.50 ± 1.00 bp in yellow 06 Highest peak at 77.50 ± 1.00 bp in yellow 07 Highest peak at 88.70 ± 1.00 bp in yellow 08 Highest peak at 98.70 ± 1.00 bp in yellow <td></td>	
10 Highest peak at 115 00 ± 0.60 bp in blue 10 Highest peak at 115 00 ± 0.60 bp in blue 10 Highest peak at 123 00 ± 0.60 bp in blue 14 Highest peak at 123 00 ± 0.60 bp in blue 14 Highest peak at 74 00 ± 1.00 bp in green 14 Highest peak at 74 10 ± 1.00 bp in green 14 Highest peak at 90 ± 1.00 bp in green 14 Highest peak at 90 ± 1.00 bp in green 15 Highest peak at 90 ± 1.00 bp in green 16 Highest peak at 90 ± 1.00 bp in green 17 Highest peak at 90 ± 1.00 bp in green 18 Highest peak at 97 .00 ± 1.00 bp in green 19 Highest peak at 97 .00 ± 1.00 bp in green 10 Highest peak at 97 .00 ± 1.00 bp in yellow 05 Highest peak at 97 .00 ± 1.00 bp in yellow 06 Highest peak at 87 .00 ± 1.00 bp in yellow 07 Highest peak at 87 .00 ± 1.00 bp in yellow 08 Highest peak at 98 .00 ± 1.00 bp in yellow <	
19 Highest peak at 119.0 f 0.60 bp in blue LS 0.61 bp in blue LS12 0 f 0.60 bp in green 14 Highest peak at 70.20 f 1.00 bp in green 15 Highest peak at 80.00 f 1.00 bp in green 16 Highest peak at 90.10 f 1.00 bp in green 17 Highest peak at 90.10 f 1.00 bp in green 18 Highest peak at 90.10 f 1.00 bp in green 20 Highest peak at 97.00 f 1.00 bp in green 21 Highest peak at 97.00 f 1.00 bp in green 220 Highest peak at 77.00 f 1.00 bp in green 2201045 Highest peak at 80.60 f 1.00 bp in yellow 00 Highest peak at 80.60 f 1.00 bp in yellow 01 Highest peak at 87.0 f 1.00 bp in yellow 02 Highest peak at 97.0 f 1.00 bp in yellow <t< td=""><td></td></t<>	
20 Highest peak at 122.00 ± 0.60 bp in blue 251241 Highest peak at 74.00 ± 1.00 bp in green 14 Highest peak at 74.00 ± 1.00 bp in green 15 Highest peak at 74.00 ± 1.00 bp in green 16 Highest peak at 92.00 ± 1.00 bp in green 18 Highest peak at 97.00 ± 1.00 bp in green 19 Highest peak at 97.00 ± 1.00 bp in green 19 Highest peak at 97.70 ± 1.00 bp in green 19 Highest peak at 77.70 ± 1.00 bp in green 10 Highest peak at 77.70 ± 1.00 bp in green 10 Highest peak at 77.70 ± 1.00 bp in green 10 Highest peak at 75.00 ± 1.00 bp in green 06 Highest peak at 75.00 ± 1.00 bp in yellow 06 Highest peak at 87.00 ± 1.00 bp in yellow 07 Highest peak at 87.00 ± 1.00 bp in yellow 07 Highest peak at 97.00 ± 1.00 bp in yellow 11 Highest peak at 97.00 ± 1.00 bp in yellow 12 Highest peak at 97.00 ± 1.00 bp in yell	
1401.14 13 Highest peak at 70,40 ± 1 00 pp in green 14 Highest peak at 71,30 ± 1 00 pp in green 15 Highest peak at 71,30 ± 1 00 pp in green 16 Highest peak at 71,30 ± 1 00 pp in green 17 Highest peak at 81,00 ± 1 00 pp in green 18 Highest peak at 91,00 ± 1 00 pp in green 19 Highest peak at 90,00 ± 1 00 pp in green 20 Highest peak at 77,40 ± 1 00 pp in green 21 Highest peak at 77,40 ± 1 00 pp in green 20 Highest peak at 77,50 ± 1 00 pp in green 20 Highest peak at 77,50 ± 1 00 pp in green 21 Highest peak at 77,50 ± 1 00 pp in green 20 Highest peak at 77,50 ± 1 00 pp in green 21 Highest peak at 87,70 ± 1 00 pp in green 20 Highest peak at 87,70 ± 1 00 pp in green 21 Highest peak at 97,00 ± 1 00 pp in green 21 Highest peak at 97,00 ± 1 00 pp in green 21 Highest peak at 97,00 ± 1 00 pp in green 22 Highest peak at 97,00 ± 1 00 pp in green	
14 Hisphest pesk at 74.0 t 1.00 tp in green 15 Hisphest pesk at 74.0 t 1.00 tp in green 16 Hisphest pesk at 97.0 t 1.00 tp in green 17 Hisphest pesk at 97.0 t 1.00 tp in green 18 Hisphest pesk at 97.0 t 1.00 tp in green 19 Hisphest pesk at 97.0 t 1.00 tp in green 20 Hisphest pesk at 97.0 t 1.00 tp in green 20 Hisphest pesk at 97.0 t 1.00 tp in green 20 Hisphest pesk at 97.0 t 1.00 tp in green 20 Hisphest pesk at 97.0 t 1.00 tp in green 20 Hisphest pesk at 97.0 t 1.00 tp in green 00 Hisphest pesk at 97.0 t 1.00 tp in green 01 Hisphest pesk at 97.0 t 1.00 tp in green 02 Hisphest pesk at 97.0 t 1.00 tp in green 01 Hisphest pesk at 97.0 t 1.00 tp in green 02 Hisphest pesk at 97.0 t 1.00 tp in green 11 Hisphest pesk at 97.0 t 1.00 tp in green 12 Hisphest pesk at 97.0 t 1.00 tp in green	
15 Highest peak at 79.20 ± 1.00 bp in green 16 Highest peak at 90.10 ± 1.00 bp in green 17 Highest peak at 90.10 ± 1.00 bp in green 18 Highest peak at 90.10 ± 1.00 bp in green 19 Highest peak at 90.10 ± 1.00 bp in green 20 Highest peak at 97.00 ± 1.00 bp in green 20 Highest peak at 97.00 ± 1.00 bp in green 20 Highest peak at 77.0 ± 1.00 bp in green 20 Highest peak at 77.0 ± 1.00 bp in yellow 06 Highest peak at 77.0 ± 1.00 bp in yellow 07 Highest peak at 87.0 ± 1.00 bp in yellow 08 Highest peak at 97.0 ± 1.00 bp in yellow 09 Highest peak at 97.0 ± 1.00 bp in yellow 09 Highest peak at 97.0 ± 1.00 bp in yellow 11 Highest peak at 97.0 ± 1.00 bp in yellow 12 Highest peak at 97.0 ± 1.00 bp in yellow	
16 Highest peak at 02 10 ± 1.00 bp in green 17 Highest peak at 09.00 ± 1.00 bp in green 18 Highest peak at 09.00 ± 1.00 bp in green 10 Highest peak at 09.00 ± 1.00 bp in green 20 Highest peak at 09.00 ± 1.00 bp in green 223145 Highest peak at 07.00 ± 1.00 bp in green 223145 Highest peak at 07.00 ± 1.00 bp in yellow 06 Highest peak at 08.00 ± 1.00 bp in yellow 07 Highest peak at 08.00 ± 1.00 bp in yellow 00 Highest peak at 07.00 ± 1.00 bp in yellow 01 Highest peak at 07.00 ± 1.00 bp in yellow 11 Highest peak at 97.00 ± 1.00 bp in yellow 12 Highest peak at 97.00 ± 1.00 bp in yellow	
17 Hishbest peak at 06.00 ± 1.00 bp in green 19 Hishbest peak at 09.00 ± 1.00 bp in green 20 Hishbest peak at 09.70 ± 1.00 bp in green 20 Hishbest peak at 09.70 ± 1.00 bp in green 20 Hishbest peak at 09.70 ± 1.00 bp in green 20 Hishbest peak at 75.40 ± 1.00 bp in green 21045 Hishbest peak at 75.40 ± 1.00 bp in green 20 Hishbest peak at 75.40 ± 1.00 bp in green 21045 Hishbest peak at 07.40 ± 1.00 bp in green 20 Hishbest peak at 08.70 ± 1.00 bp in green 21045 Hishbest peak at 08.70 ± 1.00 bp in green 211 Hishbest peak at 98.70 ± 1.00 bp in green 212 Hishbest peak at 97.00 ± 1.00 bp in green 213 Hishbest peak at 97.00 ± 1.00 bp in green 214 Hishbest peak at 97.00 ± 1.00 bp in green	
10 Highest peak at 09.0 t 1.00 bpi in green 21 Highest peak at 99.0 t 1.00 bpi in green 20 Highest peak at 97.0 t 1.00 bpi in green 20 Highest peak at 97.0 t 1.00 bpi in green 20 Highest peak at 77.0 t 1.00 bpi in green 06 Highest peak at 78.0 t 1.00 bpi in yellow 07 Highest peak at 87.0 t 1.00 bpi in yellow 08 Highest peak at 97.0 t 1.00 bpi in yellow 09 Highest peak at 97.0 t 1.00 bpi in yellow 11 Highest peak at 97.0 t 1.00 bpi in yellow 12 Highest peak at 97.0 t 1.00 bpi in yellow	
19 Highest peak at 93.00 ± 1.00 bp in green 20 Highest peak at 97.70 ± 1.00 bp in green 225145 1.00 bp in yellow 1.00 bp in yellow 06 Highest peak at 75.40 ± 1.00 bp in yellow 07 Highest peak at 05.00 ± 1.00 bp in yellow 08 Highest peak at 05.00 ± 1.00 bp in yellow 09 Highest peak at 0.40 ± 1.00 bp in yellow 00 Highest peak at 0.00 ± 1.00 bp in yellow 01 Highest peak at 90.00 ± 1.00 bp in yellow 11 Highest peak at 90.00 ± 1.00 bp in yellow 12 Highest peak at 97.00 ± 1.00 bp in yellow	
20 Highest peak at 97.70 ± 1.00 bp in green 2281045 1.00 bp in green 05 Highest peak at 75.40 ± 1.00 bp in green 07 Highest peak at 78.40 ± 1.00 bp in yellow 08 Highest peak at 97.00 ± 1.00 bp in yellow 09 Highest peak at 97.00 ± 1.00 bp in yellow 09 Highest peak at 97.00 ± 1.00 bp in yellow 11 Highest peak at 97.00 ± 1.00 bp in yellow 12 Highest peak at 97.10 ± 1.00 bp in yellow	
2221045 05 Highest peak at 75.40 ± 1.00 bp in yellow 06 Highest peak at 75.50 ± 1.00 bp in yellow 07 Highest peak at 84.70 ± 1.00 bp in yellow 08 Highest peak at 84.70 ± 1.00 bp in yellow 09 Highest peak at 94.70 ± 1.00 bp in yellow 11 Kighest peak at 94.00 ± 1.00 bp in yellow 12 Kighest peak at 94.00 ± 1.00 bp in yellow 13 Kighest peak at 94.00 ± 1.00 bp in yellow	
05 Highest peak at 75.40 ± 1.00 bp in yellow 06 Highest peak at 75.40 ± 1.00 bp in yellow 07 Highest peak at 75.50 ± 1.00 bp in yellow 08 Highest peak at 87.50 ± 1.00 bp in yellow 09 Highest peak at 87.00 ± 1.00 bp in yellow 101 Highest peak at 87.00 ± 1.00 bp in yellow 111 Highest peak at 97.00 ± 1.00 bp in yellow 12 Highest peak at 97.10 ± 1.00 bp in yellow	
06 Hishbeat peak at 70.00 ± 1.00 bp in yellow 07 Hishbeat peak at 81.60 ± 1.00 bp in yellow 08 Hishbeat peak at 84.70 ± 1.00 bp in yellow 09 Hishbeat peak at 97.70 ± 1.00 bp in yellow 11 Hishbeat peak at 97.80 ± 1.00 bp in yellow 12 Hishbeat peak at 97.10 ± 1.00 bp in yellow 12 Hishbeat peak at 97.10 ± 1.00 bp in yellow	
07 Highest peak at 81.60 ± 1.00 bp in yellow 08 Highest peak at 87.70 ± 1.00 bp in yellow 09 Highest peak at 87.80 ± 1.00 bp in yellow 09 Highest peak at 97.80 ± 1.00 bp in yellow 10 Highest peak at 97.00 ± 1.00 bp in yellow 11 Highest peak at 97.00 ± 1.00 bp in yellow 12 Highest peak at 97.10 ± 1.00 bp in yellow	
08 Highest peak at 04.70 ± 1.00 bp in yellow 09 Highest peak at 07.80 ± 1.00 bp in yellow 10 Highest peak at 50.30 ± 1.00 bp in yellow 11 Highest peak at 54.00 ± 1.00 bp in yellow 12 Highest peak at 54.00 ± 1.00 bp in yellow	
09 Highest peak at 87.80 ± 1.00 bp in yellow 10 Highest peak at 90.90 ± 1.00 bp in yellow 11 Highest peak at 94.00 ± 1.00 bp in yellow 12 Highest peak at 97.10 ± 1.00 bp in yellow	
10 Highest peak at 90.90 ± 1.00 bp in yellow 11 Highest peak at 94.00 ± 1.00 bp in yellow 12 Highest peak at 97.10 ± 1.00 bp in yellow	
11 Highest peak at 94.00 ± 1.00 bp in yellow 12 Highest peak at 97.10 ± 1.00 bp in yellow	
12 Highest peak at 97.10 ± 1.00 bp in yellow	
14 Highest peak at 103.30 ± 1.00 bp in yellow	
15 Highest peak at 106.40 ± 1.00 bp in yellow 16 Highest peak at 109.50 ± 1.00 bp in yellow	


Characterization of New miniSTR Loci


- Candidate STR marker selection
- · Chromosomal locations and marker characteristics
- PCR primer design
- Initial testing results
- · Population testing
- Allelic ladder construction
- Miniplex assay performance
 - Sensitivity
 - Inheritance with family samples
 - Allele sizing precision
 - Locus stutter percentage characterization
 - Analysis on real-world samples



M.D. Coble Talk at AAFS, Dallas, TX


February 20, 2004


"STR typing of human telogen hairs -a new approach"

- Hellmann, *et al.* (2001) *Int. J. Legal Med.* 114(4-5): 269-273
- Primer pairs with annealing positions close to the repeat units of the STR loci FES/FPS, TPOX, and TH01 were used for amplification.
- Shed telogen hairs could be typed!

Future Plans Testing and characterization of more markers. Population Databasing. Testing on degraded materials. Information will be posted on STRBase website and published as these loci are characterized We would welcome collaborations with those wishing to

test some of these new miniSTR systems

