

Segunda Reunión Internacional en Genética Forense (Chiapas, Mexico)

DNA Testing Requires a Reference Sample

A DNA profile by itself is fairly useless because it has no context...

DNA analysis for identity only works by comparison - you need a reference sample

Crime Scene Evidence compared to Suspect(s) (Forensic Case) Child compared to Alleged Father (Paternity Case) Victim's Remains compared to Biological Relative (Mass Disaster ID) Soldier's Remains compared to Direct Reference Sample (Armed Forces ID)

Polymerase Chain Reaction (PCR) Process

Basis of DNA Profiling

The genome of each individual is unique (with the

differentiate between individuals (statistical probabilities

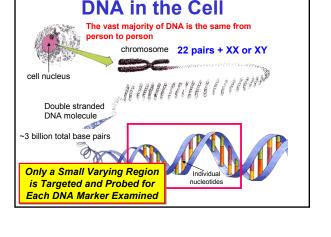
exception of identical twins) and is inherited from

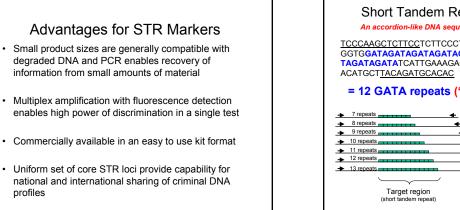
Probe subsets of genetic variation in order to

DNA typing must be performed efficiently and

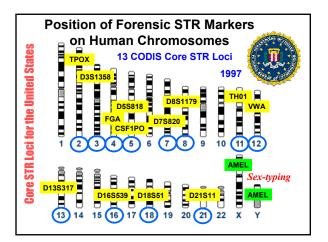
reproducibly (information must hold up in court)

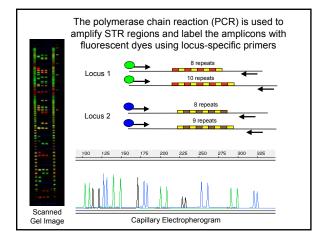
Current standard DNA tests DO NOT look at genes -

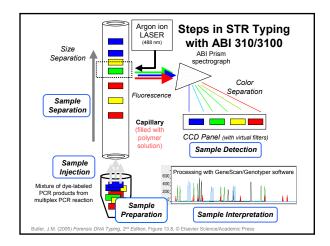

little/no information about race, predisposal to disease,

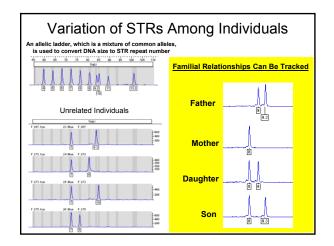

or phenotypical information (eye color, height, hair color)

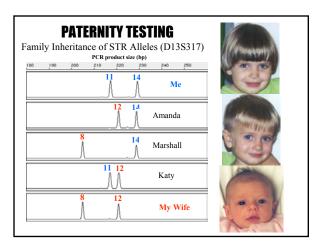
of a random match are used)

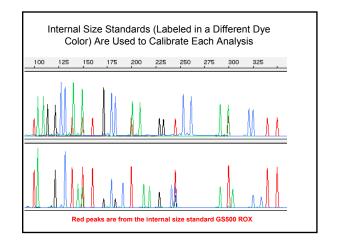

parents

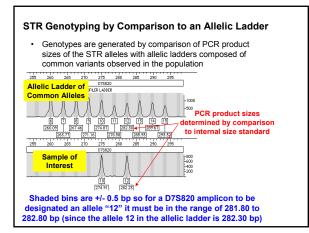

is obtained

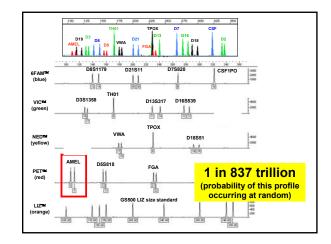


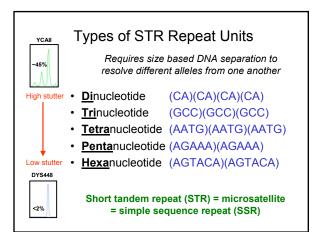


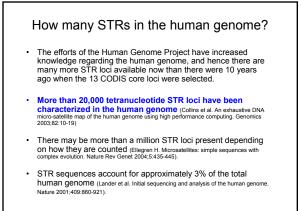

DNA profiles

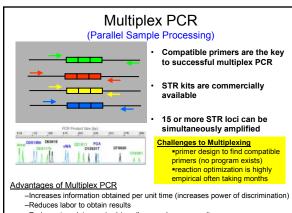


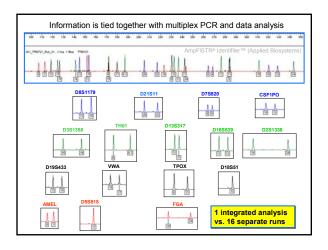


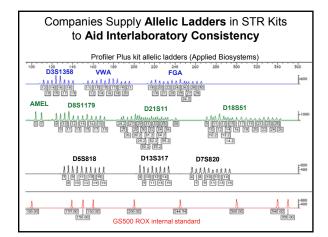




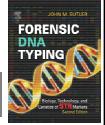



Categories for STR Markers


Category	Example Repeat Structure	13 CODIS Loci
Simple repeats – contain units of identical length and sequence	(GATA)(GATA)(GATA)	TPOX, CSF1PO, D5S818, D13S317, D16S539
Simple repeats with non-consensus alleles (e.g., TH01 9.3)	(GATA)(GAT-)(GATA)	TH01, D18S51, D7S820
Compound repeats – comprise two or more adjacent simple repeats	(GATA)(GATA)(GACA)	VWA, FGA, D3S1358, D8S1179
Complex repeats – contain several repeat blocks of variable unit length	(GATA)(GACA)(CA)(CATA)	D21S11

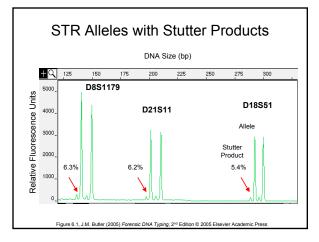

These categories were first described by Urquhart et al. (1994) Int. J. Legal Med. 107:13-20

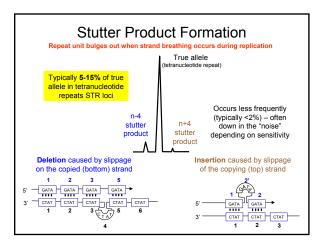
Butler, J.M. (2006) Genetics and genomics of core STR loci used in human identity testing. J. Forensic Sci. 51(2):253-265

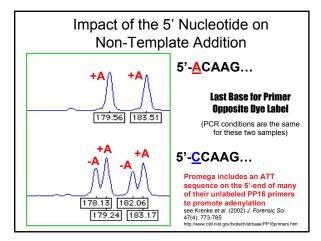


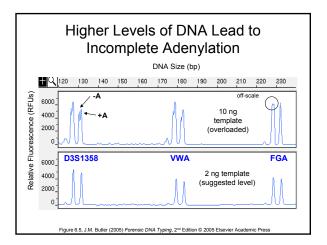
Biological "Artifacts" of STR Markers

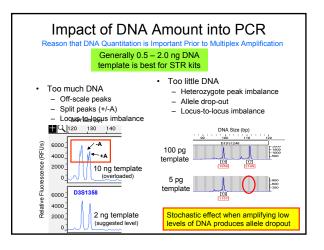
- Stutter Products
- · Non-template nucleotide addition

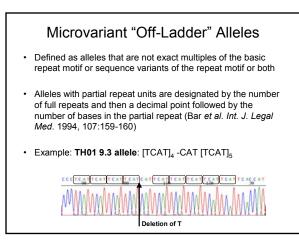

Chapter 6 covers these topics in detail

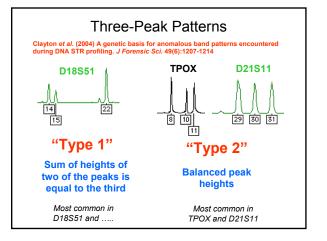

- Microvariants
- Tri-allelic patterns
- Null alleles
- Mutations

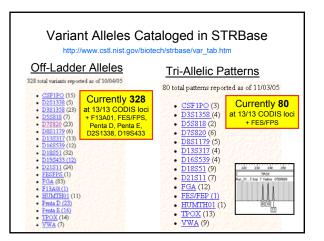

Stutter Products

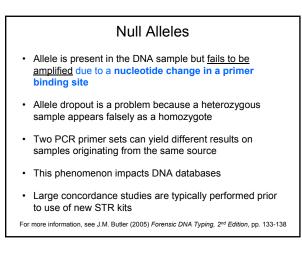

- Peaks that show up primarily one repeat less than the true allele as a result of strand slippage during DNA synthesis
- Stutter is less pronounced with larger repeat unit sizes (dinucleotides > tri- > tetra- > penta-)
- · Longer repeat regions generate more stutter
- Each successive stutter product is less intense (allele > repeat-1 > repeat-2)
- · Stutter peaks make mixture analysis more difficult

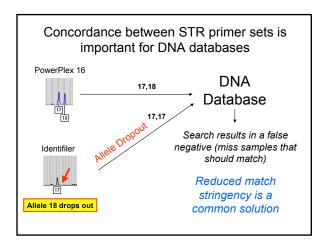


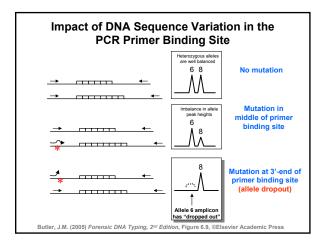


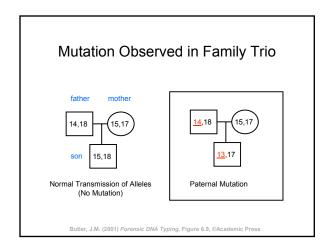

Non-Template Addition	
 Taq polymerase will often add an extra nucleotide to the end of a PCR product; most often an "A" (termed "adenylation") 	
Dependent on 5'-end of the reverse primer; a "G" can be put a the end of a primer to promote non-template addition	it
 Can be enhanced with extension soak at the end of the PCR cycle (e.g., 15-45 min @ 60 or 72 °C) – to give polymerase more time 	1
 Excess amounts of DNA template in the PCR reaction can result in incomplete adenylation (not enough polymerase to go around) 	Incomplete adenylation
Best if there is NOT a mixture of "+/- A" peaks (desirable to have full adenylation to avoid split peaks)	
A	13 14 D8S1179





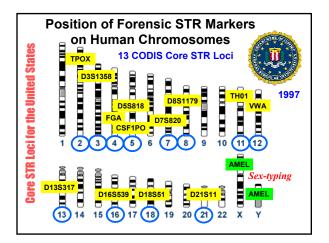




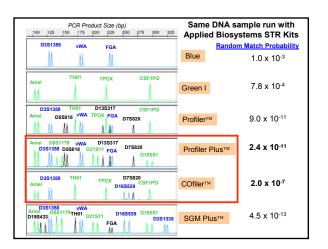


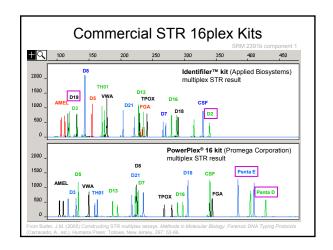
ST	R Locus	Maternal Meioses (%)	Paternal Meioses (%)	Either Parent	Total Mutations	Rate
0	SF1PO	70/179,353 (0.04)	727/504,342 (0.14)	303	1,100/683,695	0.16%
	FGA	134/238,378 (0.06)	1,481/473,924 (0.31)	495	2,110/712,302	0.30%
0	TH01	23/189,478 (0.01)	29/346,518 (0.008)	23	75/535,996	0.01%
2	трох	16/299,186 (0.005)	43/328,067 (0.01)	24	83/627,253	0.01%
core	VWA	133/400,560 (0.03)	907/646,851 (0.14)	628	1,668/1,047,411	0.16%
	3S1358	37/244,484 (0.02)	429/336,208 (0.13)	266	732/580,692	0.13%
	D5S818	84/316,102 (0.03)	537/468,366 (0.11)	303	924/784,468	0.12%
<u></u> i	D7S820	43/334,886 (0.01)	550/461,457 (0.12)	218	811/796,343	0.10%
- C	8S1179	54/237,235 (0.02)	396/264,350 (0.15)	225	675/501,585	0.13%
	13S317	142/348,395 (0.04)	608/435,530 (0.14)	402	1,152/783,925	0.15%
0	16S539	77/300,742 (0.03)	350/317,146 (0.11)	256	683/617,888	0.11%
1	D18S51	83/130,206 (0.06)	623/278,098 (0.22)	330	1,036/408,304	0.25%
	D21S11	284/258,795 (0.11)	454/306,198 (0.15)	423	1,161/564,993	0.21%
	Penta D	12/18,701 (0.06)	10/15,088 (0.07)	21	43/33,789	0.13%
	Penta E	22/39,121 (0.06)	58/44,152 (0.13)	55	135/83,273	0.16%
0	2S1338	2/25,271 (0.008)	61/81,960 (0.07)	31	94/107,231	0.09%
0	195433	22/28,027 (0.08)	16/38,983 (0.04)	37	75/67,010	0.11%
	F13A01	1/10,474 (0.01)	37/65,347 (0.06)	3	41/75,821	0.05%
F	ES/FPS	3/18,918 (0.02)	79/149,028 (0.05)	None reported	82/167,946	0.05%
	F13B	2/13,157 (0.02)	8/27,183 (0.03)	1	11/40,340	0.03%
	LPL 3 (ACTBP2)	0/8,821 (<0.01) 0/330 (<0.30)	9/16,943 (0.05) 330/51.610 (0.64)	4 None reported	13/25,764 330/51.940	0.05%

Summary of STR Mutations


Mutations impact paternity testing and missing persons investigations but not forensic direct evidence-suspect matches...

- Mutations happen and need to be considered
- Usually 1 in ~1000 meioses
- · Paternal normally higher than maternal
- · VWA, FGA, and D18S51 have highest levels
- TH01, TPOX, and D16S539 have lowest levels



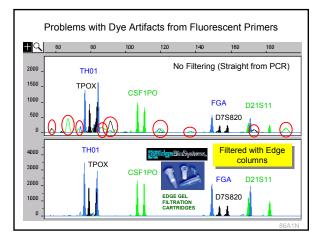

Review Article on Core STR Loci

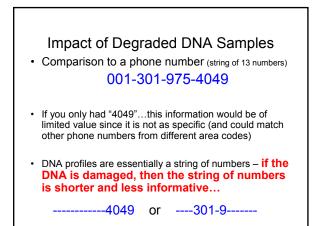
 Covers characteristics of 18 autosomal loci (13 core CODIS loci, D2, D19, Penta D, Penta E, SE33) and 11 SWGDAM-recommended Y-STR loci

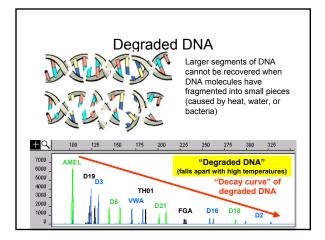
Locus	Chromosomal Location	Physical Position (May 2004; NCBI build 35)	Repeat Motif	Observed Alleles
трох	2p25.3 thyroid peroxidase, 10 th intron	Chr 2; 1.472 Mb	GAAT	4-16
D3S1358	3p21.31	Chr 3; 45.557 Mb	[TCTG][TCTA]	8-21
FGA	4q31.3 alpha fibrinogen, 3 rd intron	Chr 4; 155.866 Mb	СТТТ	12.2-51.2
D5S818	5q23.2	Chr 5; 123.139 Mb	AGAT	7-18
CSF1PO	5q33.1 c-fms proto-oncogene, 6 th intron	Chr 5; 149.436 Mb	TAGA	5-16
D7S820	7q21.11	Chr 7; 83.433 Mb	GATA	5-16
D8S1179	8q24.13	Chr 8; 125.976 Mb	[TCTA][TCTG]	7-20
TH01	11p15.5 tyrosine hydroxylase, 1 st intron	Chr 11; 2.149 Mb	TCAT	3-14
VWA	12p13.31 von Willebrand Factor, 40 th intron	Chr 12; 5.963 Mb	[TCTG][TCTA]	10-25
D13S317	13q31.1	Chr 13; 81.620 Mb	TATC	5-16
D16S539	16q24.1	Chr. 16; 84.944 Mb	GATA	5-16
D18S51	18q21.33	Chr 18; 59.100 Mb	AGAA	7-40
D21S11	21q21.1	Chr 21; 19.476 Mb	Complex [TCTA][TCTG]	12-41.2

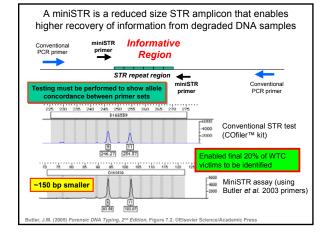
Value of STR Kits

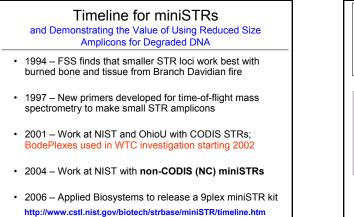
Advantages

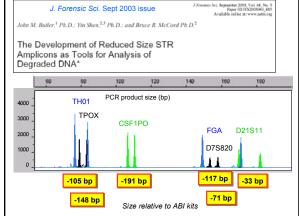

- Quality control of materials is in the hands of the manufacturer (saves time for the end-user)
- Improves consistency in results across laboratories same allelic ladders used
- Common loci and PCR conditions used aids DNA databasing efforts
- · Simpler for the user to obtain results

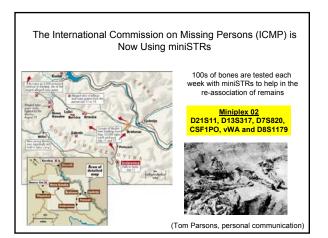

Disadvantages

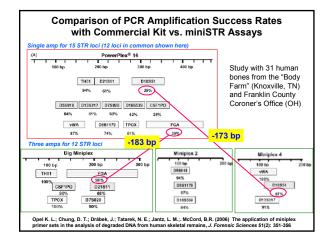

- Contents may not be completely known to the user (e.g., primer sequences)
- Higher cost to obtain results

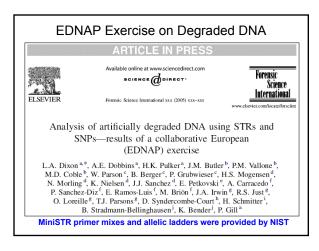

Primer Synthesis and Dye Blobs

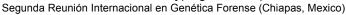

- Oligonucleotide primers are synthesized from a 3'-to-5' direction on solid-phase supports using phosphoramidite chemistry
- The fluorescent dye is attached at 5'end of the primer (it is the last component added)
- The coupling reaction at each step of primer synthesis is not 100%, which can lead to some minor level impurities
- Left-over dye molecules that are not removed by post-synthesis purification can be carried through the PCR amplification step and injected onto the capillary to produce "dye blobs" or "dye artifacts" in CE electropherograms (wider than true allele peaks)

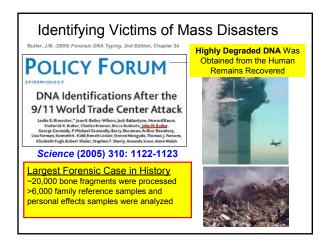


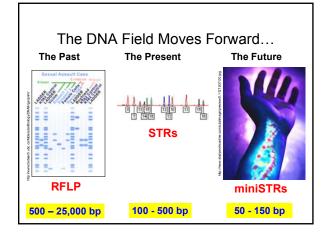


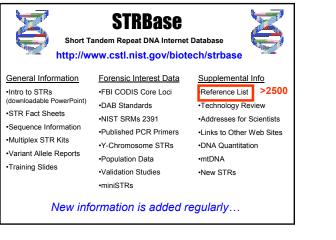


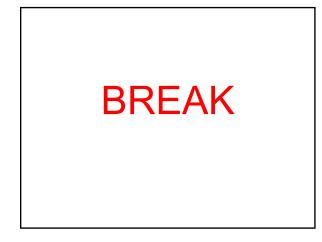


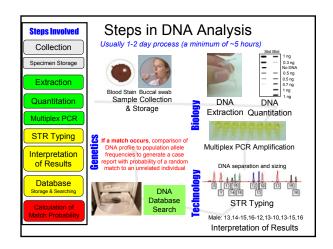


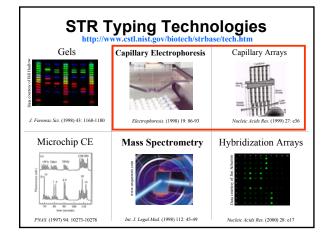


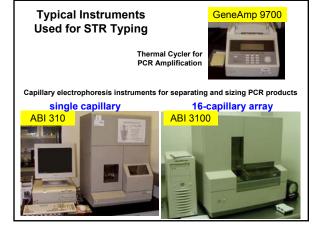


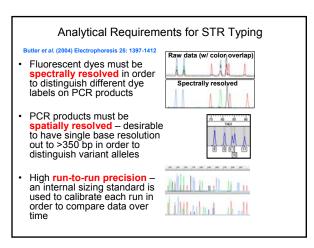




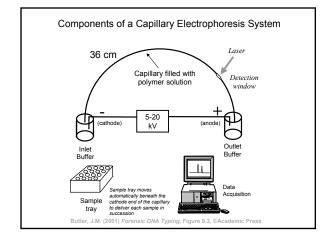


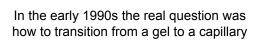






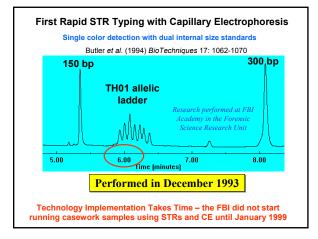
Segunda Reunión Internacional en Genética Forense (Chiapas, Mexico)


Electrophoresis 2004, 25, 1397-1	412	Cor	ntents	
Review John M. Butler! Eric Buol? Federica Criveliente ³⁺ Bruce R. McCord? ¹ National Institute of Standards and Technology, Biotechnology Division, Gaithersburg, MD, USA	Forensic DN, using the AB for STR analy DNA typing with shor applications including such as the ABP prior	1 1.1 2 3 3.1 3.2 3.3 4	Introduction	13 14 14 14 14 14 14 14
Galthorsburg, MD, USA Wermont Forensic Laboratory, Waterbury, VT, USA "Ohio University, Department of Chemistry, Athens, OH, USA	for many laboratories ing sample preparat results using CE syst ered in the context throughput and ease	5 5.1 5.2 6	Sample interpretation Software used Assessing resolution of DNA separations Applications of forensic DNA testing Forensic casework DNA databasing	14 14 14 14 14 14
		7 7.1 7.2 7.3	Increasing sample throughput Capillary array electrophoresis systems Microchip CE systems Future methods for DNA typing with STR	14 14 14
		8	markers	14


Review Article on STRs and CE

Why Use CE for DNA Analysis?

- 1. Injection, separation, and detection are automated.
- 2. Rapid separations are possible
- 3. Excellent sensitivity and resolution
- 4. The time at which any band elutes is precisely determined
- 5. Peak information is automatically stored for easy retrieval

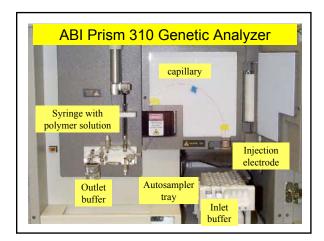


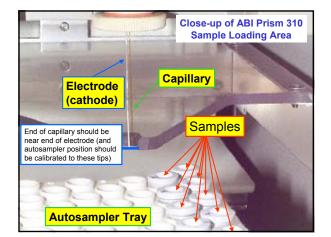
- Cross-linked acrylamide gel filled capillaries
 were tried first
 - Reusable?
 - Bubble formation
 - Themal degradation
- Alternative was to not use a gel at all

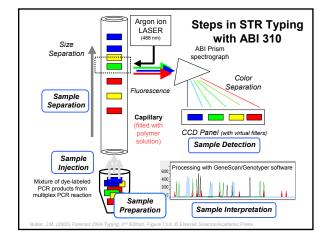
 Refillable sieving polymers
 - However, resolution was poor early on

Early Work with CE and STRs

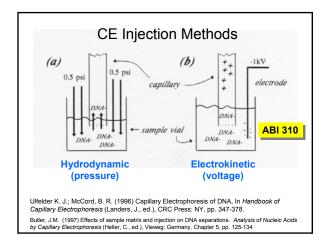
- Barry Karger's group (1988-1990)
 - Utilized gel-filled capillaries to separate ssDNA
 Introduced sieving polymers in the form of linear
- polyacrylamide to separate restriction digests Beckman P/ACE 2050 is introduced in 1992 as the first commercially available CE coupled to a laser to enable fluorescence detection
- John Butler and Bruce McCord (1993-1995) – First STR typing with single color CE using intercalating dyes and dual bracketing internal size standards
- Rich Mathies' group (1995)
 - First STR typing with multi-color CE (and multi-capillary) using dye-labeled primers
- ABI 310 is introduced in July 1995 as the first commercially available multi-color CE

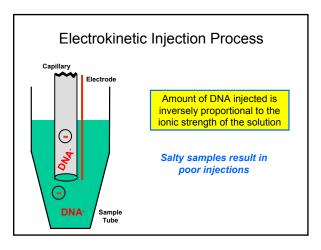


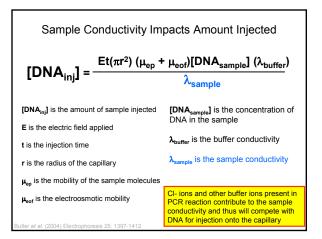

Requirements for Reliable STR Typing

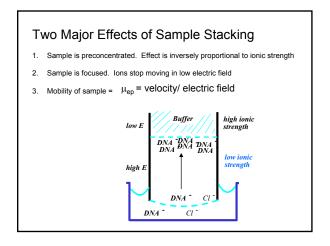

Butler et al. (2004) Electrophoresis 25: 1397-1412

- Reliable sizing over a 75-500 bp size region
- High run-to-run precision between processed samples to permit comparison of allelic ladders to sequentially processed STR samples
- Effective color separations of different dye sets used to avoid bleed through between 4 or 5 different colors
- Resolution of at least 1 bp to >350 bp to permit reliable detection of microvariant alleles

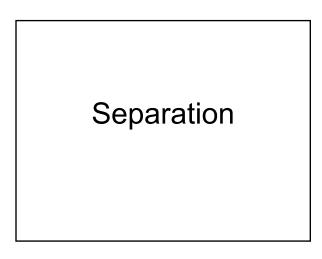


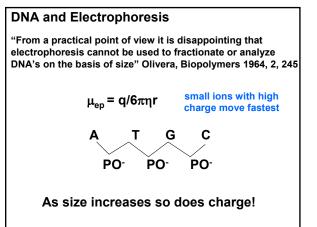



Process Involved in 310/3100 Analysis


- Injection
 - electrokinetic injection process (formamide, water)
 - importance of sample stacking
- Separation
 - Capillary 50um fused silica, 43 cm
 - POP-4 polymer Polydimethyl acrylamide
 - Buffer TAPS pH 8.0
 - Denaturants urea, pyrolidinone
- Detection
 - fluorescent dyes with excitation and emission traits
 - CCD with defined virtual filters produced by assigning certain pixels

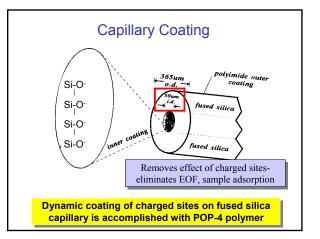
Typical Sample Preparation for ssDNA

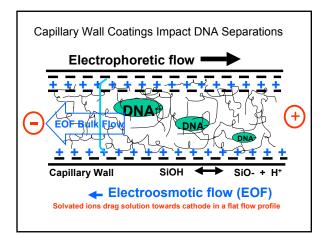

- 1. Perform PCR with dye-labeled primers
- 2. Dilute 1 μL PCR product with 24 μL deionized formamide; add 1 μL ROX-labeled internal sizing standard
- 3. Denature 2 minutes at 95 °C with thermocycler
- 4. Cool to 4 °C in thermocycler or ice bath
- 5. Sample will remain denatured for at least 3 days

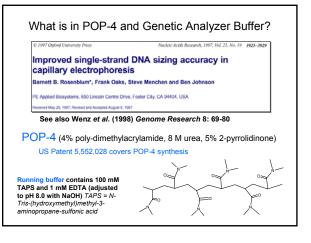

Comments on Sample Preparation

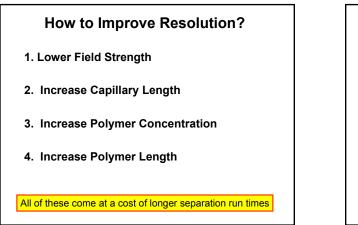
- Use high quality formamide (<100 µS/cm)!
 ABI sells Hi-Di formamide
 - regular formamide can be made more pure with ion exchange
- Deionized water vs. formamide

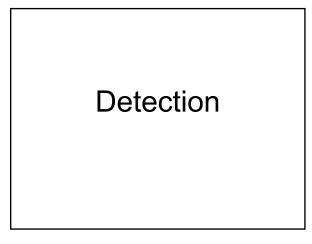
resin


- Biega and Duceman (1999) J. Forensic Sci. 44: 1029-1031
- Crivellente, Journal of Capillary Electrophoresis 2002, 7 (3-4), 73-80.
- water works fine but samples are not stable as long as with formamide; water also evaporates over time...
- Denaturation with heating and snap cooling
 - use a thermal cycler for heating and cold aluminum block for snap cooling
 - heat/cool denaturation step is necessary only if water is substituted for formamide...





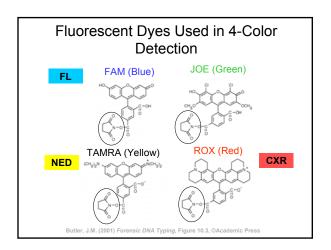

Separation Issues Capillary wall coating -- dynamic coating with polymer - Wall charges are masked by methyl acrylamide Electrophoresis buffer -- Urea for denaturing and viscosity - Buffer for consistent pH Buffer for consistent pH

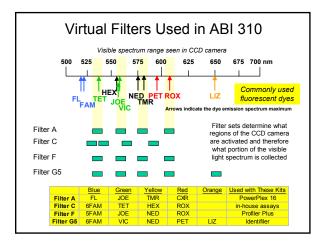

- Pyrolidinone for denaturing DNA
- EDTA for stability and chelating metals
- Polymer solution -- POP-4 (but others work also)
- Run temperature -- 60 °C helps reduce secondary structure on DNA and improves precision. (Temperature control affects DNA sizing)

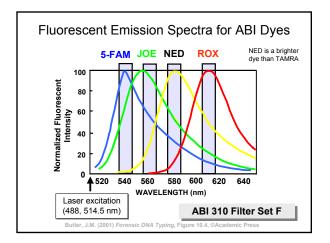
Detection Issues

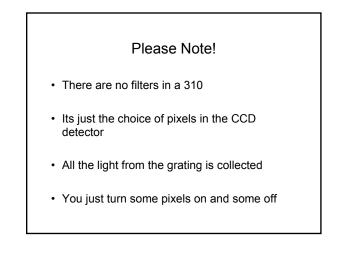
- · Fluorescent dyes
 - spectral emission overlap
 - relative levels on primers used to label PCR products
 - dye "blobs" (free dye)
- Virtual filters
 - hardware (CCD camera)
 - software (color matrix)

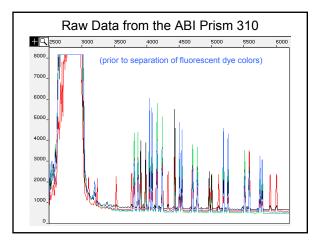
Filters determine which wavelengths of light are recorded from the CCD camera

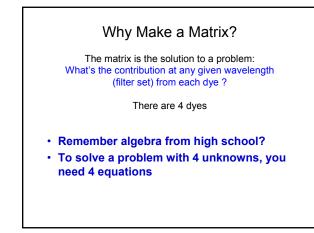

Laser Used in ABI 310

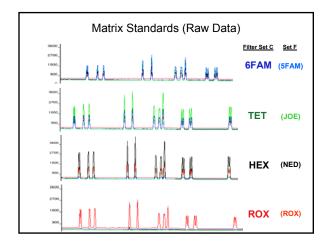

- Argon Ion Laser
- 488 nm and 514.5 nm for excitation of dyes
- 10 mW power
- Lifetime ~5,000 hours (1 year of full-time use)
- Cost to replace ~\$5,500
- · Leads to highest degree of variability between instruments and is most replaced part
- · Color separation matrix is specific to laser used on the instrument

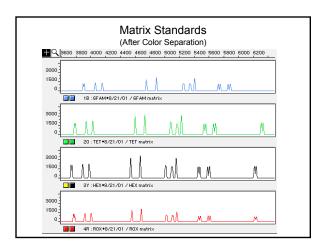

Methods for Fluorescently Labeling DNA Intercalating Dyes (post-PCR) · Dye-labeled nucleotide insertion during PCR Dye-labeled primer insertion during PCR P Fluorescent dNTPs are incorporated into both strands of PCR product Ethidium bromide led DNA 66 6 d ٦ p م P between base pairs on SYBR Green م nd of PCR pro ed with flu nt dve DNA labeled with Butler, J.M. (2001) Forensic DNA Typing, Figure 10.2, ©Academic Press

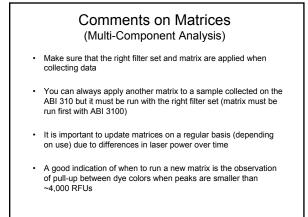

Fluorescent Labeling of PCR Products

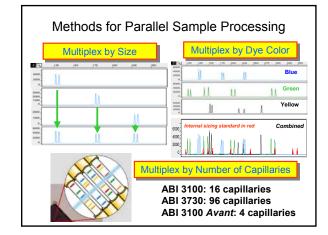

- Dyes are attached to one primer in a pair used to amplify a STR marker
- Dyes are coupled to oligonucleotides (primers) through NHS-esters and amine linkages on the 5'end of the primer: Dye-(CH₂)₆-primer
- Dye-labeled oligonucleotides are incorporated during multiplex PCR amplification giving a specific color "tag" to each PCR product
- PCR products are distinguished using CCD imaging on the 310



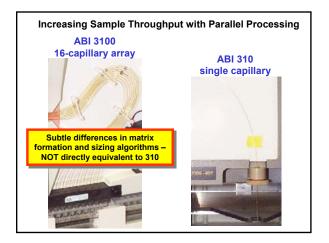


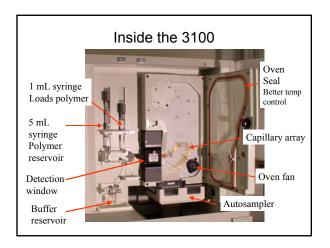


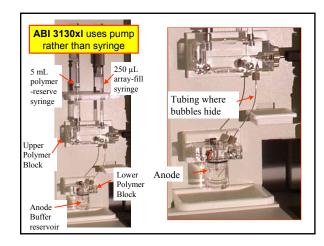


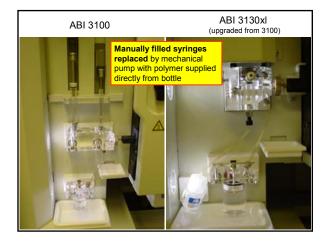

			Diffe		and Filter F with ABI 310s
		React			
	в	6	y	в	
в	1.0000	0.8502	0.1380	0.0009	
6	0.8300	1.0000	0.7622	0.0051	
٧	0.6416	0.8324	1.0000	0.1102	
в	0.4493	0.6484	0.7851	1.0000	Instrument lasers make
]	SFRM_J	IDE_NED_I	ROX POP4	E	1.
		React	ions		
	в	6	۷	в	
В	1.0000	0.6444	0.0487	0.0010	
6	0.6027	1.0000	0.5556	0.0061	
۷	0.3421	0.6146	1.0000	0.1060	
B	0.1690	0.3478	0.5791	1.0000	
					<u>.</u>

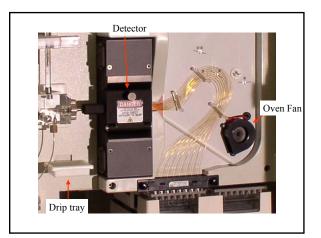
Injection List in Data Collection Software

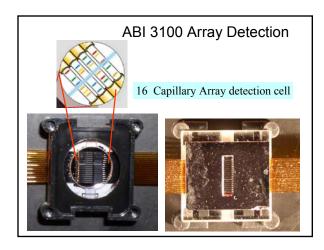

- · Lists samples to be analyzed (repeats can be easily performed)
- · Sets virtual filter on CCD camera
- · Sets electrophoresis time and voltage
- · Sets injection time and voltage
- Sets run temperature
- If desired, sample analysis can be set up for automatic matrix color separation and sizing with internal standards using defined analysis parameters

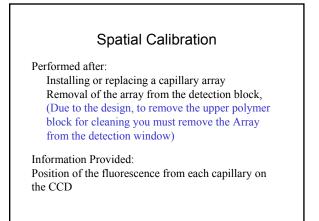

Ways to Increase Sample Throughput

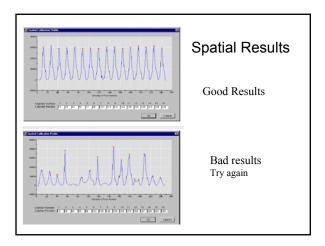

- Run more gels (FMBIO approach)
- Increase speed of single sample analysis (microchip CE systems)
- Multiplex fluorescent dyes of different colors (higher level PCR multiplexes)
- Parallel separations using capillary arrays (e.g., ABI 3100 or 3130)
- New detection technologies (MALDI-TOF mass spectrometry)

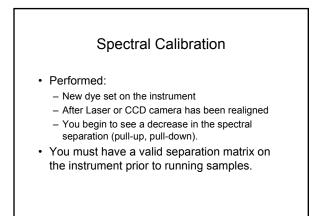


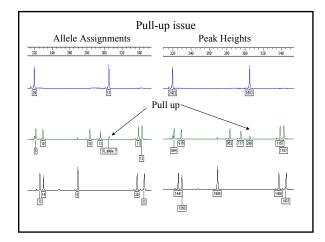

h-Throughput STR Ty	yping on the ABI 3100 (16-capillary a
بالبيد بالبالي الم الم	بيا يتبالين يا للطحية ليا ياه الم
والمعالية مرالماته	
	nts in 45 minutes with x and 16 capillaries
	x and to oupmanoo

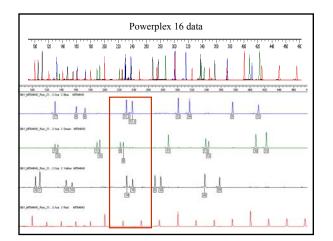


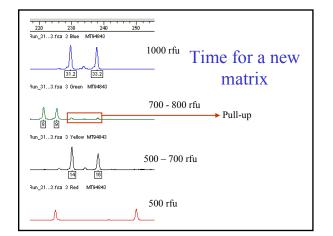


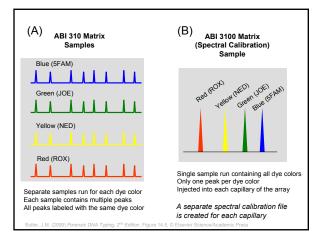


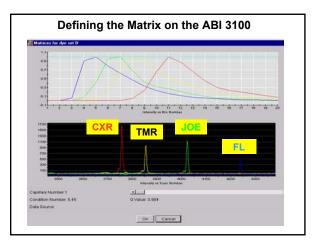


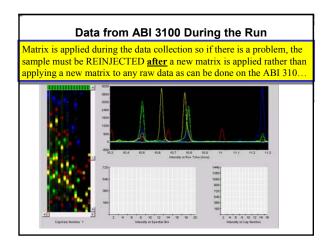


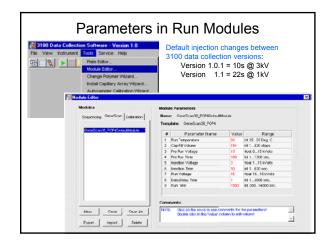

Maintenance of ABI 3100

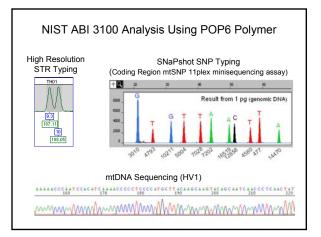

- Syringe leaks cause capillary to not fill properly
- Capillary storage & wash it dries, it dies!
- Pump block cleaning helps insure good fill
- Change the running buffer regularly

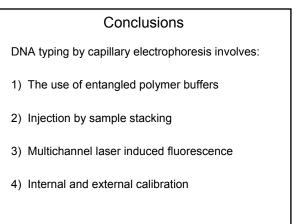

YOU MUST BE CLEAN AROUND A CE!

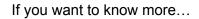












- Forensic DNA Typing: Biology and Technology behind STR Markers
- NIST website: http://www.cstl.nist.gov/biotech/strbase
- John Butler email: john.butler@nist.gov

