

Rational Institute of Justice

The Research, Development, and Evaluation Agency of the U.S. Department of Justice

Current Areas of NIST Research Effort

- Resources for "Challenging Samples" (degraded DNA or mixtures)
- · Y-Chromosome Information, Assays, and Standards
- DNA Quantitation (Interlab study, Real-time PCR comparisons)
- Tools to Aid State and Local Laboratories (e.g., STRBase)
- Aid to or Completion of Other NIJ Projects (e.g., LSBs)

Sa

<u>+</u>્ 290

1200

Large D18 Allele Characterized at NIST

310

PowerPlex 16

e from Christine Moraczewski, NE State Patrol Crime Lab

FGA

CSE

CODIS State Administrators meeting (Quantico, VA)

JIS

400

Shoulder o

Penta D

enta F

Allel 40?

Allele 12

NE

2 ng male

L

Sequence Analysis of STR Alleles
D21S11 PowerPlex 16 forward primer region [ATATGTGAGTCAATTCCCCAAG]
ANT AT G T G AG TC AAT TCCCCCAAG TG AAT TGCCTTCTATCTATCTATCTATCTATCT
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
D21S11 PowerPlex 16 reverse primer region [TGTATTAGTCAATGTTCTCCAGAGAC]
mmm Mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
D21S11 (forward) repeat region [TCTA][TCTG]
D21S11 (reverse) repeat region
perse person person and general general A and a data data data data data data dat
DURALARADARARARARARARARARARARARARARARARARA

Only studied so far in 8 different samples

GeneKin® Y-STR Systems IV: DXYS156X, DXYS156Y, DYS385 a/b _

Γ	(Minimal/extended	Commercia	al Y-ST	R Kits	NS			
۱.	haplotype)	(White et al.)	(Ayub et al.)	(lida et al.)	(Redd et al.)			
	DYS19	A7.1 (DYS460)	DYS434	DYS441	DYS446			
	DYS389I/II	A7.2 (DYS461)	DYS435	DYS442	DYS448			
	DYS390	A10	DYS436	DYS443	DYS449			
	DYS391		DYS437	DYS444	DYS450			
	DYODOD	64	DYS438	DYS445	DYS452			
	DYS392	H4	D10100	5.01.0	DYS453			
	DYS393		DYS439		DYS454			
	DYS385 a/b	(Deach stall)			DYS455			
וו		G09411 (DYS462)	43 (51)	Y-STRs	DYS456			
	YCAII a/b	000111 (010102)	(217 with	Manfred's)	DYS458			
	DYS388	Y-PLEX 6 (Re		DYS459 a/b DYS463				
	DVS425	D	YS464 a/b/c/d					
	Y-PLEX 12 (ReliaGene)							
	DYS426	PowerPlex Y (F	rPlex Y (Promega)					
	YCAIII a/b	Yfiler (Applied B	(Manfred Ka	yser GDB entries)				

	У _{st}	hr r data	d	http:/	//www.yhrd.org
		# distinct	d David - Kerry	Aug. # haplotypes	As of 5/24/04: 22,872 haplotype
ner Capagnet a Units	* mapoetypes	Hapletypes	* Peperations	per population	
worldwide	z2,873	11,573	200	114.365	Run only with minimal haploty:
Eurasian MP	10,005	0,020	160	110.03125	
European MP / European MP	16,309	7,733	121	134.78513	
curasian mr / widalc MP	357	300	5	71.4	DYS19
Eurasian MD / Uralio MD	202	145	13	30.010303	
Europian MD / Arabian MD	100	01		100.0	DYS3891/11
Furacian MD / Indo Iranian MD	1.000	564	17	58,82353	D)(0000
Euracian MP / Indian MP	218	143	27	109.0	DYS390
East Asian MP	2,105	1.701	16	131.5625	DVC204
East Asian MP / Korean MP	316	284	1	316.0	D15391
East Asian MP / Japanese MP	394	316	3	101.00000	DVC202
East Asian MP / Sino Tibetan MP	613	591	4	153.25	015392
East Asian MP / Austroasiatic MP	209	190	1	209.0	DV6303
East Asian MP / Thai MP	71	60	1	71.0	013333
East Asian MP / Austronesian MP	473	377	5	94.6	DVS385 a/b
East Asian MP / Indo Pacific MP	29	26	1	29.0	D10303 a/b
Australian Aboriginal MP	0	0	0	NaN	
African MP	1,389	923	17	81.70588	
African MP / Subsaharan MP	320	209	-4	80.0	US haplotype requires
African MP / Afro-Asiatic MP	83	79	1	83.0	2 additional losi
African MP / Afro-American MP	733	542	11	66.63636	2 auuitonal loci
African MP / Afro-Caribbean MP	253	229	1	253.0	DYS438
Amerindian MP	163	112	5	32.6	DVS/39
Eskimo Aleut MP	69	45	1	69.0	D13439

Future of Forensic DNA Typing

				NIST					
Y-STRs in Casework									
July 2004 issue of	July 2004 issue of Journal of Forensic Sciences J Forensic Sci. July 2004, Vol. 49, No. 4 Pray 1D IFS2001240 Available cellure at: www.sam.org								
Sudhir K. Sinha, ¹ Ph.D.; Brud Robin DeVille Guidry, ¹ B.S.; 1 Gina Pineda, ¹ M.S.; Siddhart and Jaiprakash G. Shewale, ¹	Sudhir K. Sinha, ¹ Ph.D.; Brace Budowle, ² Ph.D.; Ranajit Chakraborty, ³ Ph.D.; Ana Paunovic, ¹ B.S.; Robin DeVille Guidry, ¹ B.S.; Christ Larsen, ¹ M.S.; Amrita Lal, ¹ M.S.F.S.; Megon Shaffer, ¹ Ph.D.; Gina Pinceda, ¹ M.S.; Siddhartha K. Sinha, ¹ B.S.; Ekaine Schneida, ¹ B.S.; Huma Nasir, ¹ B.S.; and Jaiprakash G. Shewale, ¹ Ph.D.								
Utility of the Y-ST	R Typing	Systems	-PLEX [™] 6						
11 Y-STR Haploty	ne Data	hase for Th	ree Maior						
Population Groups	s in the l	Jnited Stat	es*						
TABLE 1-YSTR carer using the Y-PLEX TM 6 and Y-PLEX TM 5 kits that have been accepted in U.S. courts.									
Case	Date	Jurisdiction	Docket No.	Notes					
State of LA vs. Samuel Williams State of MS vs. Leon Felder	10/23/01 6/26/01	Orleans Parish Pike County	416-355 00-557-KA	Criminal paternity case Sexual assault case-also had other STRs, Y-STR produced no result					
State of GA vs. Ali R. Shabazz United States vs. Spc. Michael Kelly State of OH vs. Chackie Unsworth	7/31/02 10/16/02 4/16/03	Dekalb County Pt. Knox Lucas County	01-CR-4002 G-4801-CR-200301510	Sexual assault case Sexual assault case Daubert Hearing					

NST Typing Beyond the U.S. Core Y-STR Loci
 U.S. Core Y-STRs (selected Jan 2003 by SWGDAM Y-chromosome subcommittee): DYS19, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS438, DYS439, DYS385 a/b
 First examination of 11 U.S. haplotype loci vs. new ones: 647 U.S. males: 260 African Americans (including 20 from Carll Ladd) 244 Caucasians (including 20 from Carll Ladd) 143 Hispanics (including 20 from John Hartmann)
Types generated at NIST for 22 Y-STRs and 50 Y-SNPs
 Performance of U.S. haplotype vs. European "extended" haplotype (DYS438 and DYS439 vs. stutter-prone dinucleotide YCAII a/b)
Resolution of most common types with additional markers
Schoske et al. (2004) High-throughput Y-STR typing of U.S. populations, Forensic Sci. Int., 139:107-121

US haplotype	Y-STR	STR div	ersity	African Ar STR div	nerican ersity	Cauca STR div	tian ersity	Hisp STR &	oanic versity
(Reliagene kits)		(N=647)	Rank	(N=260)	Rank	(N=244)	Rank	(N=14)	Rank
	DYS464 a/b/c/d	0.956	1	0.954	1	0.934	1	0.937	1
Yfiler	DYS385 a/b	0.912	2	0.942	2	0.838	2	0.901	2
(ABI)	YCAII a/b	0.790	3	0.797	3	0.701	5	0.772	4
	DYS458	0.765	4	0.758	5	0.743	3	0.793	3
	DYS390	0.764	5	0.664	10	0.701	5	0.665	13
	DYS447	0.747	6	0.767	4	0.683	7	0.748	5
	DYS389II	0.736	7	0.722	6	0.675	8	0.734	6
	DYS448	0.721	8	0.722	6	0.595	11	0.704	8
	DYS456	0.700	9	0.671	9	0.731	4	0.695	9
BowerBlox V	DYS438	0.691	10	0.560	15	0.594	12	0.690	10
(Promena)	DYS19	0.676	11	0.722	6	0.498	19	0.672	12
(DYS439	0.656	12	0.636	11	0.639	9	0.717	7
	DYS437	0.637	13	0.499	17	0.583	13	0.624	14
	H4	0.611	14	0.612	12	0.562	14	0.609	15
+C4>	DYS392	0.609	15	0.434	20	0.596	10	0.673	11
	DYS460	0.570	16	0.568	14	0.555	15	0.556	18
	DYS3891	0.549	17	0.531	16	0.538	17	0.596	16
	DYS391	0.534	18	0.447	19	0.552	16	0.577	17
	DYS426	0.519	19	0.375	21	0.482	20	0.522	19
	DYS450	0.489	20	0.487	18	0.177	22	0.414	21
	DYS393	0.485	21	0.586	13	0.363	21	0.448	20
	DYS388	0.365	22	0.246	22	0.501	18	0.312	22

NS

SNP Typing at NIST

- STRBase is the official ISFG repository of forensic SNP information
 - Gill et al. Science & Justice 2004, 44, 51-53
 http://www.cstl.nist.gov/biotech/strbase/SNP.htm
- We are cataloging SNP information with the goal to standardize assays and speed validation of markers
- We will continue to explore various SNP typing technologies to provide information to the forensic DNA typing community – primary focus on SNaPshot
- We are beginning to evaluate SNP performance directly against miniSTRs for analysis of degraded DNA collaborative study planned with EDNAP

Future of Forensic DNA Typing

NS

Typing mtSNPs

Coding Region SNPs

Collaboration with AFDIL (Tom Parsons and Mike Coble) Develop an 11-plex assay for typing SNPs outside the control region

The 11 SNP sites are thought to help resolve Caucasians with the most common mitotype (${\sim}7\%)$

Control Region SNPs

Typing population samples with Roche linear arrays (Cassandra Calloway) Probe 10 regions (18 SNPs) within HVI and HVII

Evaluate assay performance and ability to resolve U.S. population samples

Future of Forensic DNA Typing

H	How Close Can a Stable Primer be Designed to NE the STR Repeat Region?						
	Locus		Distance 3'end from Repeat	<u>Comment</u>			
Ī	CSF1PO	F	14	partial repeat just 5' of repeat			
		R	6				
	FGA	F					
		R	23	partial repeat just 3' of repeat			
	TH01 F						
	R 1		1				
	TPOX	F	-4				
		R 5					
[VWA	F	0				
		R	0				
	D3S1358	F	-1				
		R	-1				
	D5S818	5S818 F 4					
		R	-5				
	D7S820	F	<u> </u>				
		R	65	polyA stretch just 3' of repeat			

STR Locus	GenBank Accession	GenBank Allele	Allele Range	Allele Spread
CSF1PO	X14720	12	6-16	40 bp
FGA	M64982	21	12.2-51.2	156 bp
TH01	D00269	9	3-14	44 bp
TPOX	M68651	11	5-14	36 bp
vWA	M25858	18	10-25	60 bp
D3S1358	NT_005997	18	8-20	48 bp
D5S818	AC008512	11	7-16	36 bp
D7S820	AC004848	13	5-15	40 bp
D8S1179	AF216671	13	7-19	48 bp
D13S317	AL353628	11	5-16	44 bp
D16S539	AC024591	11	5-15	40 bp
D18S51	AP001534	18	7-27	80 bp
D21S11	AP000433	29	24-38.2	58 bp
Penta D	AP001752	13	2.2-17	73 bp
Penta E	AC027004	5	5-24	95 bp
D2S1338	AC010136	20	15-28	52 br

Why go beyond CODIS loci

"To achieve this purpose, either new STRs could be developed, or alternatively, existing STRs could be supplemented with a SNP panel."

"There also efforts for modifying existing STR panels by decreasing the size amplicons by designing new primers."

Gill, P., Werrett, D.J., Budowle, B. and Guerrieri, R. (2004) An assessment of whether SNPs will replace STRs in national DNA databases-Joint considerations of the DNA working group of the European Network of Forensis Csicnec Institutes (ENFS) and the Scientific Working Group on DNA Analysis Methods (SWGDAM). Science&Justice, 44(1): 51-53.

NIS

NS

- Desirable to have markers unlinked from CODIS loci (different chromosomes) for some applications
- Small size ranges to aid amplification from degraded DNA samples

May 25, 2004

NIC

\$2.50

\$2.50

\$ Cost per sample (20 μL – 25 μL)									
Assay	\$ PCR Master Mix	\$ Primers	\$ TaqMan probe	Total					
lu	0.80*	0.0025	NA	\$0.8025					
H01	0.80*	0.0025	NA	\$0.8025					
FS-HUMRT	0.73#	0.0025	0.17	\$0.9025					
B1	0.73#	0.0025	0.17	\$0.9025					
ntDNA	0.73#	0.0025	0.17	\$0.9025					

NA

NA

NA

NA

* Platinum[®] SYBR[®] Green qPCR SuperMix UDG (Invitrogen, Carlsbad, CA) # Platinum[®] Quantitative PCR SuperMix – UDG (Invitrogen, Carlsbad, CA)

NA

NA

Qfiler Human

Qfiler Y Male

