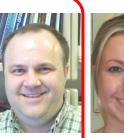
National CODIS Conference November 15, 2010 – Salt Lake City, Utah

NIST Update

John M. Butler

NIST Human Identity Project Team


National Institute of Standards and Technology Gaithersburg, Maryland

NIST Human Identity Project Teams within the Applied Genetics Group

Forensic DNA Team

John **Butler**

Mike Coble

Becky Hill

Funding from the National Institute of Justice (NIJ)

through NIST Office of Law Enforcement Standards

Kline

Jan Redman

DNA Biometrics Team

Vallone O'Connor Butts Funding from the FBI S&T Branch

through NIST Information Access Division

Data Analysis Support

In March 2010, Mike Coble returned to NIST after 4 years at AFDIL

Dave Duewer

Amy Decker left for AFDIL in Nov 2009

New Staff and Projects Erica Butts – DNA extraction Kristen Lewis - kinship analysis

Since November 2009...

• **47 presentations** to the forensic DNA community

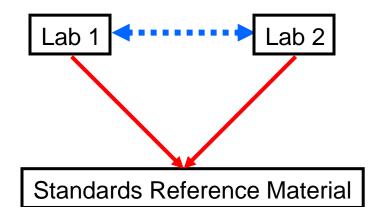
• 16 publications

- Assisting with PP16HS developmental validation
- ESI/ESX 17 European STR kit concordance
- Rapid PCR of commercial kits
- Room temperature DNA sample storage
- Low template DNA testing
- Concordance testing strategies
- Variant allele sequencing primers
- SE33 variation in U.S. samples
- Evaluation of D12/vWA independence
- Assessing self-declared ancestry in U.S. samples
- Cell line authentication with STRs

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Presentation Outline

- SRM 2391c to be available mid-2011
- STR kit concordance studies
- New STR loci characterized
- New STRBase sections: LT-DNA, mixtures, kinship
- Tri-allelic patterns
- Kinship analysis
- Rapid and direct DNA testing
- Training workshops & information
- Advanced Topics in Forensic DNA Typing (3rd edition)


Standard Reference Materials (SRMs) http://www.nist.gov/srm

Traceable standards to ensure accurate and comparable measurements between laboratories

National Institute of Standards & Technology Certificate of Analysis Standard Reference Material[®] 2391b PCR-based DNA Profiling Standard

SRM 2391b – autosomal STRs SRM 2392 &-I – mtDNA sequencing SRM 2395 – Y-STRs SRM 2372 – DNA quantitation SRM 2394 – mtDNA heteroplasmy SRM 2399 – Fragile X

Calibration with SRMs enables confidence in comparisons of results between laboratories

Helps meet ISO 17025 needs for traceability to a national metrology institute

2003: NIST SRM 2391b

Driven primarily by commercial kit loci...

2

National Institute of Standards & Technology Certificate of Analysis Standard Reference Material® 2391b PCR-based DNA Profiling Standard

This Standard Reference Material (SRM) is intended primarily for use in the standardization of forensic and paternity quality assumance procedures for Polymerane Chain Reaction (PCR)-based genetic testing and for instructional law enforcement or non-clinical research purposes. This SRM can also be used for quality assurance when assigning values to in-house control materials. It is not intended for any human or animal clinical diagnostic use. Note that SRM 2301b is slightly modified from SRM 2301, in that there is more emphasis on Short Tandem Repeats (STRa) and less emphasis on D1880 [1,2] reflecting the growing interest and utility of STRs [3 to 14]. Additional information on each STR locus can be found at a NIST-sponsored database on the interest: <u>http://www.estl.nist.gov/biotechistbases [14]</u>.

This SRM is composed of well-characterized human decorpriberucleic acid (DNA) in two forms: genemic DNA and DNA to be extracted from cells apotted onto filter paper. A unit of the SRM is composed of 12 focem components packaged in one box. See the section in this certificate entitled *Description of Components* for a complete luining of the components.

Cortilied Values: The SRM is certified for genetic loci of forensic interest that were commercially available at the time of production. Genetic types for these loci can be found in Tables 1, 2, and 3. The tables are organized as follows: Table 1 lists the genetic types for the Federal Bureau of Investigation's (FBF's) CODIS (<u>COmbined DNA</u> Index System) core STR loci, Table 2 lists additional STR loci of interest, and Table 3 lists the genetic types for D1S80, AmpliType^{III} PM + HLADQA1, and Amelogenin.

Expiration of Certification: The certification of this SRM is valid until 31 December 2008, provided the SRM is handled and stored in accordance with the instructions given in this certificate. However, the certification is invalid if the SRM is contaminated or otherwise modified.

Maintenance of SRM Certification: MST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of certification, NIST will notify the purchaser. Return of the attached registration card will facilitate notification.

Storage: Store frozen at a temperature of -20 °C. DO NOT use a self-defrosting freezer because periodic cycling of temperatures may cause shortened shelf life of this SRM.

The overall direction and ecordination of the technical activities leading to certification were under the chairmanship of J.M. Butler of the NEST Biotechnology Division.

Analytical determination and technical measurements leading to the certification of this SRM were performed by M.C. Kline and J.W. Redman of the NIST Biotechnology Division.

The support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the NEST Standard Reference Materials Group by C.S. Davis. Vincent Vilker, Acting Chief

	Biotechnology Division
Gaithenburg, MD 20899	John Rumble, Jr., Chief
Certificate Issue Date: 06 December 2002	Measurement Services Division

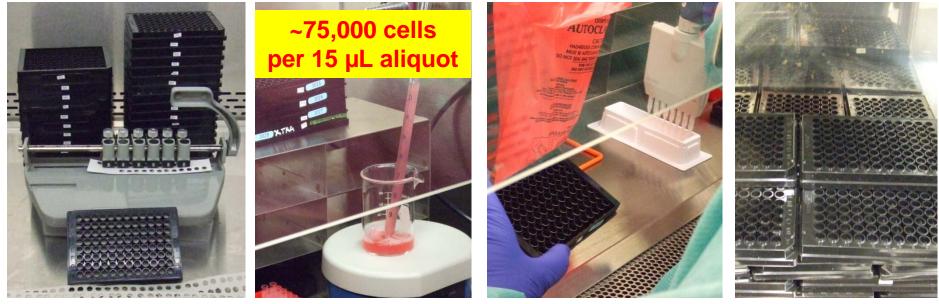
SRM 2391b

Page 1 of 7

F13B	FES/FPS	LPL	Penta D	Penta E	D2S1338	D19	S433
10,10	12,12	10,11	10,15	7,12	17,23	13,	16.2
8,10	10,11	40					16
9,10	11,12	48 a	autos	oma	I STR	S	4
6,9	10,13	cha	racter	rized	acros	S	3
8,9	11,13	12	2 DNA	<mark>A san</mark>	nples		14
9,10	11,11	10,12	9,12	12,14	25,25	12	,14
6,8	11,11*	11,12	3.2,11	12,16	17,22	13,	15.2
6,8	10,11	9,11	8,9	5,10	22,22	12.	2,15
8,10	10,12	11,12	12,12	12,13	19,23	14	,15
8,8	11,11	10,12	8,12	11,11	23,23	13	,14
8,10	10,12	11,12	12,12	12,13	19,23	14	,15
8,8	11,11	10,12	8,12	11,11	23,23	13	,14

NIST Standard Reference Material (SRM) for Forensic DNA Testing

SRM 2391b (2003-2011) SRM 2391c (2011-future)


- 48 autosomal STR loci with certified values
- **10 liquid genomic DNA** components + **2 punches** (cells on 903 paper)
- All single source samples
- 4 males + 6 females
- 9947A & 9948 included

- 23 autosomal STR loci and 17 Y-STRs certified
- 4 liquid genomic DNA components + 2 punches (cells on FTA & 903 paper)
- 5 single source + 1 mixture
- 3 males + 2 females (unique)
- All new samples
 - no 9947A or 9948

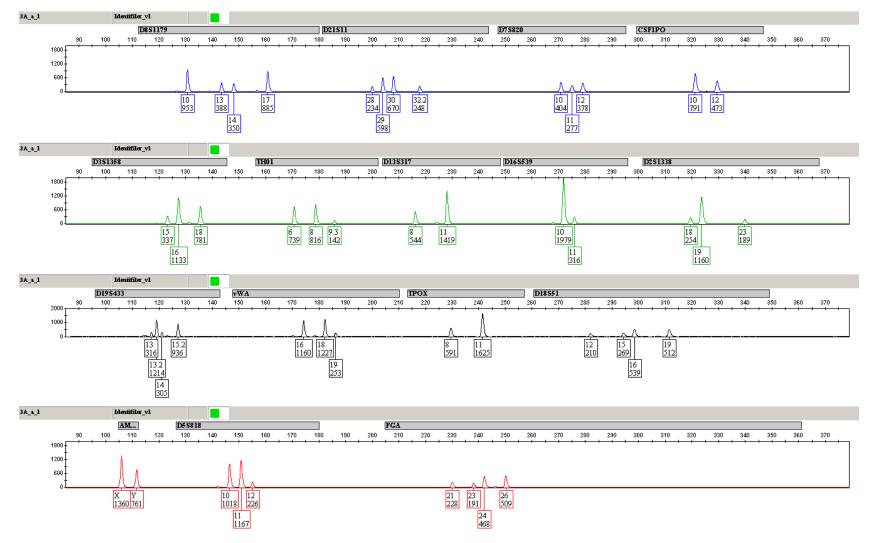
SRM 2391c to replace SRM 2391b and SRM 2395 (price reduction)

SRM Production Process for Preparing Cells on FTA or 903 Paper

Required >200 million cells (43 mL of media) to spot 2688 paper punches

Paper is punched and placed into a sterile 96 well tray

Cell suspension is stirred to keep homogeneous


8-channel pipette is used to load cell plates and spot paper punch

Punches are first air-dried and then stored in a desiccator

Each punch, containing hopefully a similar amount of cells, is then placed into a tube and packaged with the other SRM 2391c components

Making a Mixture for SRM 2391c

Carefully considering allele combinations & mixture ratios

Additional Information on SRM 2391c

- Liquid genomic DNA components
 - Considering 50 µL volume with ~2 ng/µL concentration (will not be certified for DNA quantity)
 - Mixture will be 3 parts male, 1 part female (total $\sim 2 \text{ ng/}\mu\text{L}$)
 - For production purposes, we will **need 140 µg** of each DNA sample
 - PFA (Teflon) tubes to reduce DNA binding to walls
- Paper punches (6 mm diameter)
 - Enables multiple punches from a single spot
 - Theoretically 400 ng of DNA per punch (recovery will depend on extraction efficiency)
- Will have sequence information or multiple STR kit confirmation results for every certified allele call
- Will verify performance on every commercially available STR typing kit

Commercially Available STR Kits

Applied Biosystems (17)

- AmpFISTR Blue (1996)
- AmpFISTR Green I (1997)
- Profiler (1997)
- Profiler Plus (1997)
- COfiler (1998)
- SGM Plus (1999)
- Identifiler (2001)
- Profiler Plus ID (2001)
- <u>SEfiler (2002)</u>
- Yfiler (2004)
- MiniFiler (2007)
- SEfiler Plus (2007)
- Sinofiler (2008) China only
- Identifiler Direct (2009)
- NGM (2009)
- Identifiler Plus (2010)
- NGM SElect (2010)

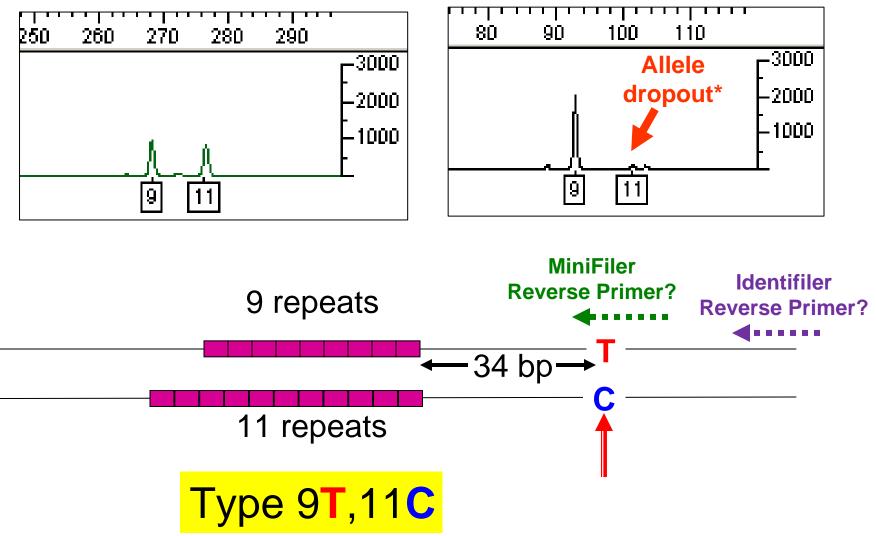
Promega Corporation (13)

- PowerPlex 1.1 (1997)
- PowerPlex 1.2 (1998)
- PowerPlex 2.1 (1999)
- **PowerPlex 16** (2000)
- PowerPlex ES (2002)
- PowerPlex Y (2003)
- PowerPlex S5 (2007)
- **PowerPlex 16 HS** (2009)
- PowerPlex ESX 16 (2009)
- PowerPlex ESX 17 (2009)
- PowerPlex ESI 16 (2009)
- PowerPlex ESI 17 (2009)
- PowerPlex 18D (2010)

<u>Qiagen</u> (2010)

Primarily selling kits in Europe Due to patent restrictions cannot sell in U.S.

- ESSplex
- ESSplex SE
- Decaplex SE
- IDplex
- Nonaplex ESS
- Hexaplex ESS
- HD (Chimera)
- Argus X-12
- Argus Y-12
- DIPlex (30 indels)
- ~1/3 of all STR kits were released in the last year


STR Kit Concordance Testing

- Many of these STR kits have different primer sequences for amplifying the same STR locus
- Need to analyze the same DNA samples with different STR typing kits looking for differences
- In some rare cases, allele dropout may occur due to mutations in primer binding regions

SRM 2391b Genomic 8 with D16S539

Identifiler

MiniFiler

STR Kit Concordance Testing

Profiles in DNA Article Published April 2010

Article Type: Feature

Volume 13 No. 1, April 2010

Strategies for Concordance Testing

Carolyn R. Hill, Margaret C. Kline, David L. Duewer and John M. Butler

National Institute of Standards and Technology, Biochemical Science Division, Gaithersburg, Maryland, USA

Concordance evaluatio or "null alleles" present commercial short tand markers available to th kits because the primer (PCR) product sizes. W

4 S's of Concordance Testing

Standard samples (data on same samples) Software (to check data concordance) Sequencing (to understand null alleles) STRBase (sharing with the community)

may occur due to primer-binding-site mutations that affect one set of primers but not another.

http://www.promega.com/profiles/1301/1301_08.html

NIST Pipeline for STR Kit Analysis Work by Becky Hill and Dave Duewer

- Concordance testing with standard samples
 - Sequence analysis of any null alleles to understand differences
- Locus characteristics
 - Heterozygote peak height ratios
 - Stutter percentages (including allele-specific)
- Allele frequencies for all new loci
 - Across U.S. Caucasian, Hispanic, African American, and Asian
- Probability of identity for different locus sets

Summary of NIST Samples Evaluated

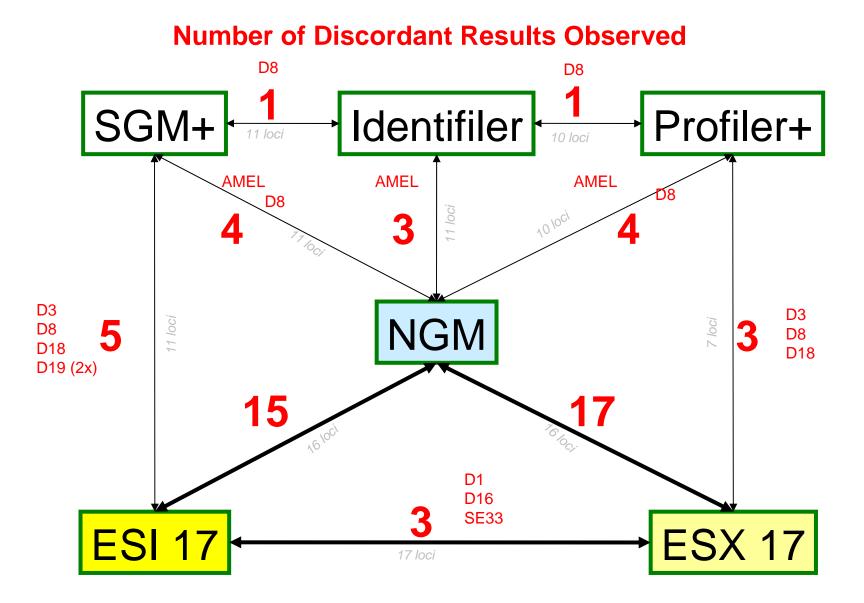
• U.S. Population Samples (657 samples)

- Previously studied with Identifiler, MiniFiler, Yfiler, PP16, miniSTRs, and many additional assays (>200,000 allele calls)
- 260 African Americans, 260 Caucasians, 140 Hispanics, and 3 Asians

http://www.cstl.nist.gov/biotech/strbase/NISTpop.htm

• U.S. Father/Son pairs (786 samples)

- Previously studied with Identifiler, MiniFiler, Yfiler
- ~100 fathers/100 sons for each group: African Americans, Caucasians, Hispanics, and Asians
- **NIST SRM 2391b** PCR DNA Profiling Standard (**12 samples**)
 - Components 1-10 (includes 9947A and 9948): well characterized
 - ABI 007 and K562


Total number of samples = 1455 1443 population samples

Kit Concordance Comparisons

Kits compared	Samples	Loci compared	<u>Comparisons</u>	<u># Differences</u>	<u>Concordance (%)</u>	
SGM-ID	1436	11	15,796	1	99.994%	
ID-ProPlus	1427	10	14,270	1	99.993%	
SGM-NGM	1436	11	15,796	4	99.975%	
ID-NGM	1449	11	15,939	3	99.981%	
ProPlus-NGM	1427	10	14,270	4	99.972%	
SGM-ESI	1436	11	15,796	5	99.968%	
ProPlus-ESX	1427	7	9,989	3	99.970%	
ESI-NGM	1449	16	23,184	15	99.935%	
ESX-NGM	1449	16	23,184	17	99.927%	
ESI-ESX	1455	17	24,735	3	99.988%	
		TOTAL	172,959	56	99.970%	
	172,959 comparisons			arisons		
			56 tot	56 total differences		
			<mark>99.97</mark> 9	99.97% concordance		

Kits (except Identifiler) were kindly provided by Promega and Applied Biosystems for concordance testing performed at NIST

Concordance Testing Summary

See also Hill, C.R., et al. (2010) Strategies for concordance testing. Profiles in DNA (Promega), 13(1). Available at http://www.promega.com/profiles/1301/1301_08.html

Characterization of New STR Loci

- 23 loci now present in commercial STR kits
 - 13 CODIS loci plus D2S1338 (40 alleles), D19S433 (36 alleles), Penta D (50 alleles), Penta E (54 alleles), D2S441 (22 alleles), D10S1248 (13 alleles), D22S1045 (14 alleles), D12S391 (51 alleles), D1S1656 (25 alleles), and SE33 (171 alleles)
- Chromosomal location
- Repeat structure and sequence
- U.S. population samples
- Literature surveys to gather all known alleles

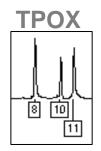
		picac		
STR Locus	Alleles Observed	Genotypes Observed	H(obs)	P_{I} (all samples) n = 1426
SE33	58	<u>341</u>	0.9383	0.0063
Penta E*	20	113	0.8779	0.0175
D2S1338	13	73	0.8752	0.0221
D1S1656	17	99	0.8871	0.0229
D18S51	23	102	0.8696	0.0263
D12S391	24	120	0.8654	0.0279
FGA	29	111	0.8702	0.0299
Penta D*	16	70	0.8733	0.0360
D21S11	32	98	0.8331	0.0399
D19S433	16	83	0.8100	0.0534
D8S1179	11	48	0.7966	0.0553
vWA	11	42	0.8000	0.0624
D16S539	9	30	0.7812	0.0723
D13S317	9	30	0.7749	0.0724
D7S820	12	35	0.7826	0.0745
TH01	9	27	0.7518	0.0752
D2S441	14	46	0.7777	0.0807
D10S1248	12	41	0.7812	0.0828
D3S1358	11	31	0.7489	0.0904
D22S1045	11	45	0.7567	0.0935
D5S818	9	34	0.7225	0.1057
CSF1PO	10	33	0.7567	0.1071
TPOX	10	30	0.6830	0.1351

23 STR loci present in STR kits

Rank ordered by their variability (P₁ = probability of identity)

Better for mixtures (more alleles seen)

There are several loci more polymorphic than the current CODIS 13 STRs


Better for kinship (low mutation rate)

New STRBase Sections

Forensic STR Information

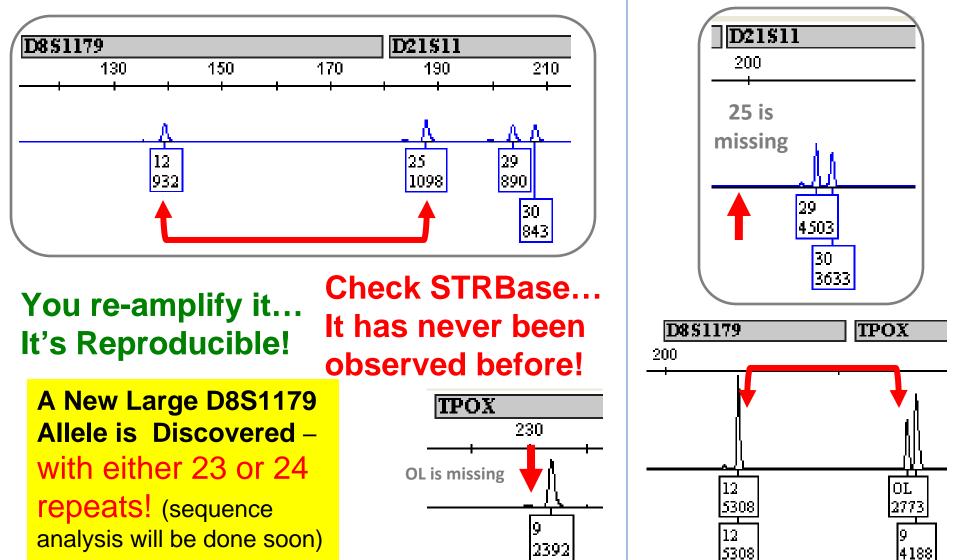
- o STRs101: Brief Introduction to STRs
- Core Loci: FBI CODIS Core STR Loci and European Core Loci
- STR Fact Sheets (observed alleles and PCR product sizes)
- Multiplex STR kits
- <u>Sequence Information (annotated)</u>
- o <u>Variant Allele Reports</u> 🔶
- <u>Tri-Allelic Patterns</u>
- Mutation Rates for Common Loci
- <u>Published PCR primers</u>
- o <u>Y-chromosome STRs</u> 🔶
- Low-template DNA Information Updated
- Mixture Interpretation
- o <u>Kinship Analysis</u>
- Null Alleles discordance observed between STR kits
- STR Reference List now 3400 references

Tri-Allelic Patterns

Tri-Allelic Patterns

- Tri-alleles are Copy Number Variants (CNVs) in the human genome detected as three peaks at a single locus rather than the expected single (homozygous) or double (heterozygous) peak
- Observed at a rate of ~1 in every 1,000 DNA profiles with some loci having a higher rate
- With a million DNA profiles going into NDIS each year, collectively CODIS DNA databasing labs will see approximately 1,000 tri-alleles this next year

Slide from Steven Myers, CA DOJ **Data from Missouri Highway Patrol DNA Lab**


Frequency of Tri-Allelic Patterns

		Locus	Observations	1 in
•	Database Size:	D3S1358	2	35,000
		VWA	10	6,900
	69,000	FGA	11	6,300
		D8S1179	2	35,000
•	Overall Average	D21S11	9	7,700
	Occurrence:	D18S51	3	23,000
		D5S818	1	69,000
	1 in 1,000	D13S317	4	17,000
_		D7S820	0	
	Note:	D16S539	3	23,000
	This is Steven's summary	TH01	0	
	of Missouri's data. You won't find this	TPOX	9	7,700
	table on STRBase.	CSF1PO	1	69,000
		Penta D	3	23,000
		Penta E	10	6,900
		Combined	68	1,000

How Do You Characterize Your Tri-Allelic Patterns?

Identifiler

PowerPlex 16 HS

D8S1179 - All Previously	Allele (Repeat #)	Promega PowerPlex 16	ABI Identifiler	Repeat Structure [TCTR] _n	Reference
Known Alleles	6	199 bp	119 bp	Not published	STRBase
KIIOWII Alleles	7	203 bp	123 br	[TCTA] ₇	Griffiths <i>et al.</i> (1998)
	8	207 bp	127 bp	[TCTA] ₈	Barber and Parkin (1996)
	9	211 bp	131 bp	[TCTA] ₉	Barber and Parkin (1996)
	10	215 bp	135 bp	[TCTA] ₁₀	Barber and Parkin (1996)
	10.1	216 bp	136 bp	Not published	STRBase
	10.2	217 bp	137 bp	Not published	STRBase
	11	219 bp	139 bp	[TCTA] ₁₁	Barber and Parkin (1996)
	12	223 bp	143 bp	[TCTA] ₁₂	Barber and Parkin (1996)
	12.1	224 bp	144 bp	Not published	STRBase
Many alleles	12.2	225 bp	145 bp	Not published	STRBase
	12.3	226 bp	146 bp	Not published	STRBase
sequences	13 (a)	227 bp	147 bp	[TCTA]₁[TCTG]₁[TCTA] ₁₁	Barber and Parkin (1996)
	13 (b)	227 bp	147 bp	[TCTA] ₂ [TCTG] ₁ [TCTA] ₁₀	Kline et al. (2010)
are not	13 (c)	227 bp	147 bp	[TCTA] ₁ [TCTG] ₁ TGTA[TCTA] ₁₀	Kline e <i>t al.</i> (2010)
known	13 (d)	227 bp	147 bp	[TCTA] ₁₃	Kline e <i>t al.</i> (2010)
	13.1	228 bp	148 bp	Not published	STRBase
	13.2	229 bp	149 bp	Not published	STRBase
	13.3	230 bp	150 bp	Not published	STRBase
	14	231 bp	151 bp	[TCTA]₂[TCTG]1[TCTA]11	Barber and Parkin (1996)
	14.1	232 bp	152 bp	Not published	STRBase
Ve just set the	14.2	233 bp	153 bp	Not published	STRBase
•	15	235 bp	155 bp	[TCTA] ₂ [TCTG] ₁ [TCTA] ₁₂	Barber and Parkin (1996)
new world record	15.1	236 bp	156 bp	Not published	STRBase
or the lorgest Da	15.2	237 bp	157 bp	Not published	STRBase
or the largest D8	15.3	238 20	158 bp	Not published	STRBase
llele (23 or 24	16	239 bp	159 bp	[TCTA] ₂ [TCTG] ₁ [TCTA] ₁₃	Barber and Parkin (1996)
	16.1	240 bp	160 bp	Not published	STRBase
	17	243 bp	163 bp	[TCTA] ₂ [TCTG] ₂ [TCTA] ₁₃	Barber and Parkin (1996)
	17.1	244 bp	164 bp	Not published	STRBase
	17.2	245 bp	135 bp	Not published	STRBase
	18	247 bp	י. 167 סיל	[TCTA] ₂ [TCTG] ₁ [TCTA] ₁₅	Barber and Parkin (1996)
	19	251 bp	171 bp	[TCTA] ₂ [TCTG] ₂ [TCTA] ₁₅	Griffiths et al. (1998)
	20	255 bp	175 bp	Not published	STRBase

ARTICLE IN PRESS

Forensic Science International: Genetics xxx (2010) xxx-xxx

STR Allele Sequencing Has Been Provided Free to the Community for the Past Ten Years Thanks to NIJ-Funding

Short communication

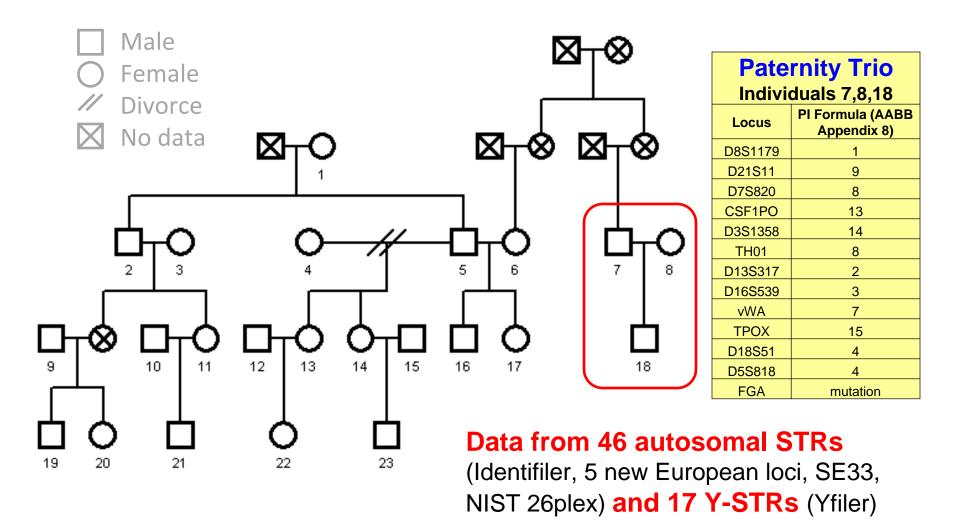
STR sequence analysis for characterizing normal, variant, and null alleles

Margaret C. Kline^{*}, Carolyn R. Hill, Amy E. Decker¹, John M. Butler

National Institute of Standards and Technology, 100 Bureau Drive, M/S 8312, Gaithersburg, MD 20899, USA

111 normal and variant alleles sequenced (at 19 STR & 4 Y-STRs) **17 null alleles** sequenced (with impact on various STR kit primers)

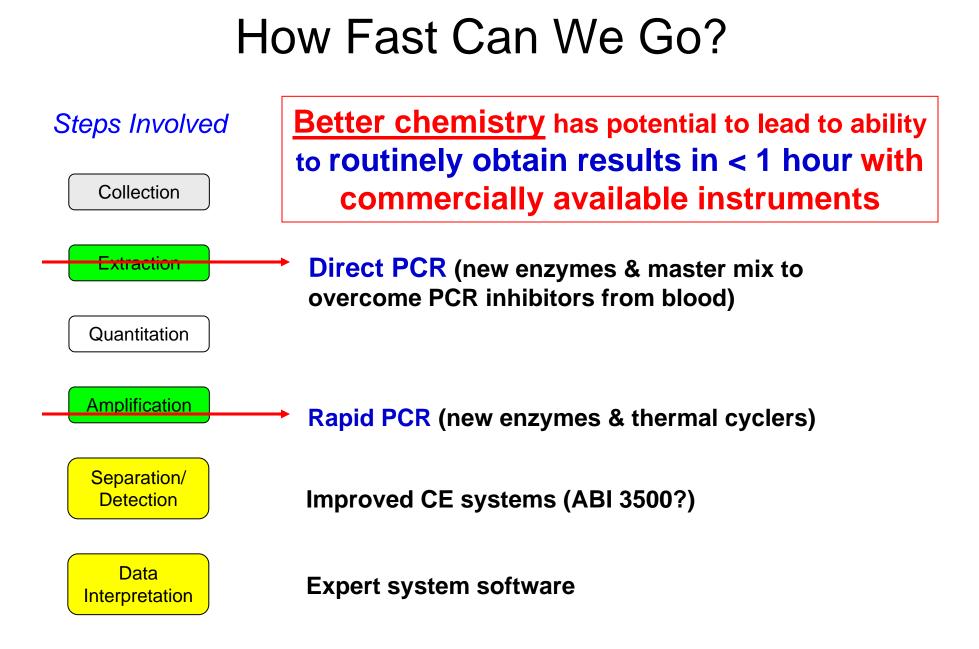
Provides primer sequences for 23 autosomal STRs & 17 Y-STRs Provides full protocol for gel separations and sequencing reactions **Primer positions are outside of all known kit primers**


Kline, M.C., et al. (2010) STR sequence analysis for characterizing normal, variant, and null alleles, Forensic Sci. Int. Genet. doi:10.1016/j.fsigen.2010.09.005

NIST Efforts with Kinship Analysis

Work by Kristen Lewis O'Connor, NIST NRC Postdoc (PhD research with Bruce Weir at University of Washington on familial search issues)

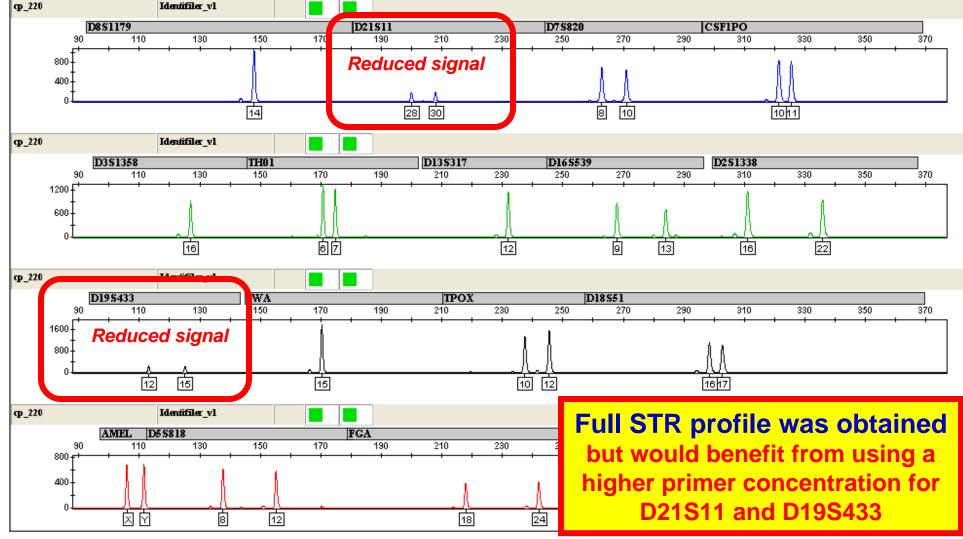
- Provide technical expertise and advice to DHS and other federal agencies as needed
- Examine impact of additional STR loci (and other genetic markers) on addressing specific kinship questions
- Simulate likelihood ratio distributions with different sets of STR loci and different potential relationships
- Examine different software programs (and develop approaches for lab validation including investigating possible standard data sets for software testing)


NIST Standard Reference Family Pedigree

Data available for testing software programs: http://www.cstl.nist.gov/biotech/strbase/kinship.htm

Rapid DNA

Work by Pete Vallone and Erica Butts (FBI-funded)



Work by Pete Vallone and Erica Butts (FBI-funded)

Rapid and Direct PCR

- Performing research on reducing the total time required for STR typing
 - Focusing on the multiplex amplification of commercial STR kits with faster polymerases and thermal cyclers
 - Single-source reference samples (sensitivity > 200 pg)
- Testing rapid DNA typing devices as they become available
- Exploring direct PCR protocols with FTA and 903 papers

20 Minute PCR Amplification on Cepheid Cycler

Using fast cycler and new DNA polymerases

28 cycles, Identifiler STR kit, 1 ng of DNA

Mixture Workshop (Promega/ISHI 2009)

http://www.cstl.nist.gov/biotech/strbase/mixture.htm

Handout >200 pages Literature list of >100 articles

<u>13 Modules Presented</u>

Introductions (Robin) SWGDAM Guidelines (John) Analytical thresholds (Catherine) Stutter (Mike) Stochastic effects (Robin) Peak height ratios (Charlotte) Number of contributors (John) Mixture ratios (John) Mixture principles (Charlotte) Statistics (Mike)

Case Example 1 (Robin) Case Example 2 (Charlotte) Case Example 3 (John)

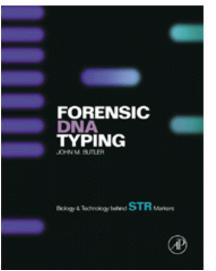
Catherine Grgicak Boston U. **Mike Coble** NIST RobinJohnCottonButlerBoston U.NIST

Charlotte Word Consultant

NIJ Grant to Boston University funded ~150 state & local lab analysts to attend

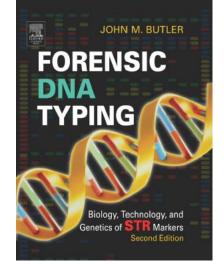
AAFS 2011 Mixture Workshop February 22, 2011 (Chicago, IL)

DNA Mixture Analysis: Principles and Practice of Mixture Interpretation and Statistical Analysis Using the SWGDAM STR Interpretation Guidelines


Planning for ~200 people

Topics (Speakers)

SWGDAM Guidelines (John Butler) Mixture Fundamentals (Mike Adamowicz) Validation & Thresholds (Joanne Sgueglia) Mixture Statistics (Todd Bille) Case Summary Analysis (John Butler) Worked Case Example (Mike Coble) Complex Mixtures (Gary Shutler) Software Survey (Mike Coble) Updating Protocols (Jennifer Gombos) Training Staff (Ray Wickenheiser)

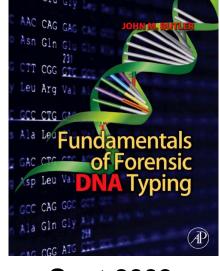

The Expansion of Forensic DNA Typing

1st Edition

Jan 2001 335 pp. 17 chapters

2nd Edition

Feb 2005


688 pp.

24 chapters

Chinese Translation (2007) Y. Hou, translator

Japanese Translation (2009) Y. Fukuma, translator

3rd Edition

Sept 2009

Fundamentals 18 chapters (520 pp.)

Advanced Topics 25 chapters (~800 pp.)

Planned for Oct 2011

New Materials in *Advanced Topics* book Planned release date: October 2011

- Will cite >1500 new references
- New chapter on legal aspects
 - expert witness prep, perspectives from lawyers
- New chapter on X-chromosome markers
- Extensive updates on mixtures, LCN, Y-STRs, miniSTRs, mtDNA, SNPs, non-human DNA, database, & kinship issues
- Coverage of all the new STR kits
- Listing of all known STR alleles for all 23 kit loci

Overview of NIST Efforts

- Concordance Testing of STR Kits
- Other Genetic Markers & Software
- DNA Biometrics (rapid PCR)
- International Impact (European loci/kits)
- STRBase Resources and SRMs

The NIST Human Identity Project Team

(Forensic DNA & DNA Biometrics)

Funding from the National Institute of Justice (NIJ) through the NIST Office of Law Enforcement Standards and the FBI S&T Branch through the NIST Information Access Division

...Bringing traceability and technology to the scales of justice...

Mike

Coble

Becky

Hill

John Butler Project Leader,

V

Forensic DNA

Butts

Erica

Duewer

Dave

Margaret Kline

Kristen Lewis

Kinship Analysis

Jan Redman

Project Leader, **DNA Biometrics**

Rapid PCR &

Biometrics

Workshops &	Mixtures,	Concordance &
Textbooks	mtDNA & Y	LT-DNA

Software Tools & Variant alleles & Direct PCR & STRBase **DNA** Extraction Cell Line ID Data Analysis Support

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm john.butler@nist.gov 301-975-4049