

Presentation Outline · Team Members and Outputs for the Past Year . **Standards** - SRM 2391c: plans for next reference material Technology - Rapid PCR for DNA biometrics - New STR loci, assays, and kits evaluated - Variant alleles cataloged in STRBase - Low template DNA studies • Training - Workshops and STRBase information available

- New book: Fundamentals of Forensic DNA Typing

Commu	INICA Since tl	tion \ he Nov 2	vith t	he Con	nmun nce	ity
	Totals	John	Pete	Margaret	Becky	Amy
Presentations	51	32	8	4	4	3
Posters	8	2	3	1	1	1
Workshops	11	11	1			1
Totals	70	45	12	5	5	5
Our team pub http://www.	lication cstl.ni:	ns and st.gov/l	presen Diotech	itations ai /strbase/l	e availa NSTput	able at <mark>p.htm</mark>

APPLIED GENETICS Group

Major Programs Currently Underway

Clinical Genetics

Huntington's SRM

"universal" GMO detection/

quantitation (35S promoter)

Efforts to standardize testing of future portable DNA systems

– CMV SRM

Ag Biotech

DNA Biometrics

- Kinship analysis

Cell Line Authentication

- Rapid PCR methods

Forensic DNA

- New loci and assays (26plex)
- STR kit testing
- Ancestry SNP assays Low-template DNA studies
- Mixture interpretation
- STR nomenclature Variant allele cataloging and
- sequencing Expert systems review
- Training workshops to forensic DNA laboratories
- Validation information and software tools
- Textbook 3rd ed. (2 vol.)

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Z

Looking for a Ph.D. to Expand Our Team

- We are currently seeking a Ph.D. scientist to help with our forensic DNA and clinical DNA efforts
- Please email me if you or someone you know may be interested: john.butler@nist.gov

Standards

"Rapid Amplification of Commercial STR Typing Kits"

- International Society of Forensic Genetics (ISFG) meeting (Buenos Aires, Argentina), September 16-17, 2009
- 20th International Symposium on Human Identification (Las Vegas, NV), October 13-14, 2009

Our team publications and presentations are available at: http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

- Identifiler, PP16, Yfiler, MiniFiler and Promega S5
- · Testing thermal cyclers with faster ramp rates

NIST Studies with New STR Kits

- Over the past year, our NIST team has worked with Promega to evaluate their new STR kits
 - PowerPlex ESX 17 & ESI 17 with new European loci
 - PowerPlex 16 HS with new enzyme & buffer system
- Concordance studies, population data analysis, and additional validation information
- Plan to do similar studies with Applied Biosystems on their NGM and other new kits

Features of These New STR Kits

- Improved sensitivity ("turbo-charged engines")
 New PCR buffer and polymerase master mix
 Better fluorescent dye labels (5-dye chemistry)
- Greater tolerance for PCR inhibitors – New PCR buffer and polymerase master mix
- Different primer sequences for amplifying core STRs Requires concordance checks to confirm no null alleles
- Additional STR loci with high heterozygosities to improve power of discrimination for entire profile
 Addresses requirements for extended European Standard Set

PowerPlex[®] ESI 17 Population Data (N=1443)

Marker	Number of Alleles	Theoretical Genotypes	Genotypes Observed	Heterozygosity	PIC
Amelogenin	2	3	3		
TH01	8	36	25	0.7479	0.7572
D3S1358	11	66	31	0.7493	0.7305
D22S1045	11	66	45	0.7548	0.7318
D2S441	15	120	47	0.7729	0.7499
D16S539	9	45	30	0.7791	0.7650
D10S1248	12	78	41	0.7805	0.7460
D8S1179	11	66	48	0.7971	0.7961
vWA	11	66	42	0.7999	0.7866
D19S433	16	136	83	0.8089	0.7984
D21S11	28	406	95	0.8296	0.8293
D12S391	24	300	120	0.8650	0.8651
FGA	29	435	111	0.8691	0.8598
D18S51	23	276	103	0.8698	0.8699
D2S1338	13	91	73	0.8726	0.8821
D1S1656	17	153	101	0.8837	0.8806
SE33	58	1711	343	0.9377	0.9426

	SE33 (58 alleles observed)												
	To	tal		Population	ons, %			To	tal		Populatio	ns, %	
Allele	#	%	Af Am	Asian	Cauc	Hisp	Allele	#	%	Af Am	Asian	Cauc	Hisp
6.3		_					23	12	0.4	0.6	1.0	0.2	0.1
7	2/	13 a	enot	mes	ohse	rved	23.2	91	3.2	2.2	4.2	4.3	2.1
8		ro g	choty	pes	0050		24	1	0.0			0.1	
10.2		eter	ozva	ositv	= 0.9	377	24.2	74	2.6	1.3	6.2	2.2	2.5
11		0.0	- 75	,	0.1	-	25.2	109	3.8	2.6	6.9	4.0	3.1
11.2	2	0.1	0.2				26	1	0.0	0.1			
12	11	0.4	0.3		0.5	0.4	26.2	163	5.6	6.1	5.2	4.3	7.1
12.2	4	0.1	0.2			0.3	27	1	0.0				0.1
13	31	1.1	1.1		1.5	1.0	27.2	225	7.8	4.3	10.4	9.5	8.6
13.2	9	0.3	1.0				27.3	2	0.1				0.3
14	85	2.9	5.1	0.2	2.5	2.4	28	2	0.1	0.1	0.2		
14.2	10	0.3	0.4	10	0.4	0.3	28.2	180	6.2	4.4	7.9	7.4	6.1
15 2	102	3.5	0.9	1.2	3.9	0.7	28.3	2	0.1	0.1		0.1	
16	144	5.0	4.8	47	4.0	6.7	29	1 1	0.0		0.2		
16.2	5	0.2	0.3	7.7	0.1	0.1	29.2	147	5.1	27	5.7	6.3	63
16.3	2	0.1	0.0		0.1	0.3	29.3	1	0.0		0.2		
17	205	7.1	9.3	4.0	6.2	7.3	30	l i	0.0		0.2		0.1
17.2	1	0.0	0.1				30.2	111	3.8	16	32	5.8	4.6
17.3	5	0.2	0.1		0.2	0.3	31	3	0.0	0.1	0.2	0.0	
18	268	9.3	12.1	5.0	7.2	11.0	31.2	52	1.8	1.5	25	2.2	13
18.3	1	0.0			0.1		32	1	0.0	1.0	2.0	0.1	
19	250	8.7	12.4	6.2	6.6	8.0	32.2	25	0.0	0.4	0.7	13	0.0
19.2	8	0.3		0.2	0.4	0.4	33	20	0.0	0.1	0.1	0.1	0.0
20	216	7.5	10.9	9.2	5.4	4.8	22.2	11	0.1	0.2		0.1	0.1
20.2	20	0.7	0.3	1.2	1.1	0.3	33.2		0.4	0.3		0.5	0.4
21	108	3.7	4.6	6.7	2.4	2.7	24.2		0.0	0.5		0.7	
21.2	48	1.7	1.1	1.7	2.4	1.3	34.2		0.0	0.1		0.1	
22 2	65	23	1.3	3.2	1.5	1.3	35		0.0	0.1			

tal variants reported as of 10	New Additi	
Core STR Loci (363)	Other Common STR Loci (122)	Y-STR Loci (39)
CSFIPO (20) EGA (103) THOI (19) TPOX (17) VWA (13) DSSIIS (15) DSSIIS (15) DSSIIS (15) DSSIIS (20) DSSIIS (20) DSSIIS (21) DISSII (17) DISSSI (41) DZISII (32)	D251338 (23) D1954133 (27) Penta D (37) Penta E (30) F13407 (1) F155 FP5 (1) F135 FP5 (1) F138 LPL SE33 (1) D151577 (1) D1451434 (1)	 DYS12 (2) DYS589(2) DYS5891 (2) DYS5892 (3) DYS592 (3) DYS592 (4) DYS592 (4) DYS592 (4) DYS512 (4) DYS418 (2) DYS418 (2) DYS418 (2) DYS418 (2) DYS515 (2)

Low-Level DNA Studies

New Section of STRBase on This Issue

- Recently launched webpage
 - http://www.cstl.nist.gov/biotech/strbase/LTDNA.htm
 Low-template DNA = LTDNA (not LCN!)

· The LTDNA section includes:

- Presentations from the Promega LCN Panel
- Validation data from our sensitivity studies to illustrate problems and consensus profile solution to low levels of DNA testing
- Literature listing of pertinent articles to help explain the issues involved in this topic

- attempt to analyze data below this line?
 - A certain amount of input DNA (based on what data?)
 - A pre-determined stochastic threshold (based on what data?)

Impact of "Unreliable" Results Allele drop-out can be dealt with using moderate stringency searches in CODIS algorithms a homozygote "14" would hit to a heterozygote "11,14" Allele drop-in is most problematic for DNA database searches this can be corrected for with replicate testing and consensus profiles to eliminate incorrect alleles

NIST Update - CODIS Conference 2009

