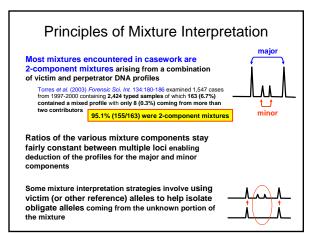
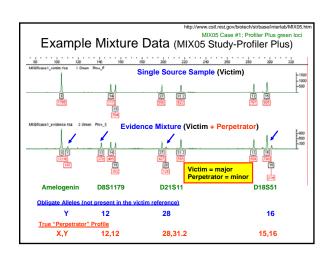

October 23, 2006

J.M. Butler – Mixture Interpretation: Lessons from Interlab Study MIX05 (National CODIS Conference, Arlington, VA)

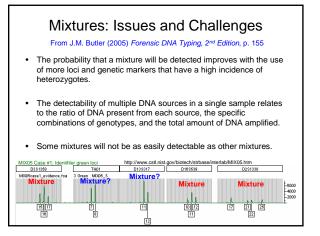
Presentation Outline


- Mixtures: issues and challenges
- MIX05 interlaboratory study (initiated at CODIS Conference Nov 15, 2004)
- Mixture interpretation variation future role of expert systems
- Opportunities for community improvement and standardization regarding mixture interpretation


Other Session Speakers Angelo DellaManna – case examples and CODIS search strategies with mixtures

Elizabeth Johnson – software demo of USACIL 2-component mixture ratio program

Mixtures: Issues and Challenges From J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, p. 154


- Mixtures arise when two or more individuals contribute to the sample being tested.
- Mixtures can be challenging to detect and interpret without extensive experience and careful training.
 Even more challenging with poor quality data when degraded DNA is present...
- Differential extraction can help distinguish male and female components of many sexual assault mixtures.
 Y-chromosome markers can help here in some cases...

Mixtures: Issues and Challenges

- Artifacts of PCR amplification such as stutter products and heterozygote peak imbalance complicate mixture interpretation
- Thus, only a limited range of mixture component ratios can be solved routinely

Two Parts to Mixture Interpretation Deduction of alleles present in the evidence (compared to victim and suspect profiles)

- **Providing some kind of statistical answer** regarding the weight of the evidence
 - An ISFG DNA Commission (Peter Gill, Bruce Weir, Charles Brenner, etc.) is evaluating the statistical approaches to mixture interpretation and has made recommendations

Gill et al. (2006) DNA Commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. Forensic Sci. Int. 160: 90-101

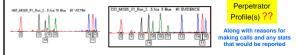
A High Degree of Variability Currently Exists with Mixture Interpretation

- "If you show 10 colleagues a mixture, you will probably end up with 10 different answers"
 Peter Gill, Human Identification E-Symposium, April 14, 2005
- Interlaboratory studies help to better understand
- why variability may exist between laboratories
- Most analysts are only concerned about their own lab protocols and do not get an opportunity to see the big picture from the entire community that can be provided by a well-run interlaboratory study

NIST Initia	ted In	terlaboratory Studies
Studies involving STRs	# Labs	Publications
Evaluation of CSF1PO, TPOX, and TH01	34	Kline MC, Duewer DL, Newall P, Redman JW, Reeder DJ, Richard M. (1997) Interlaboratory evaluation of STR triplex CTT. J. Forensic Sci. 42: 897-906
Mixed Stain Studies #1 and #2 (Apr–Nov 1997 and Jan–May 1999)	45	Duewer DL, Kline MC, Redman JW, Newall PJ, Reeder DJ, (2001) NIST Mixed Stain Studies #1 and #2: interlaboratory comparison of DNA quantification practice and short tandem repeat multiple-spurt 46: 1199-1210 multiple-source samples. J. Forensic Sci. 46: 1199-1210
MSS3 Mixed Stain Study #3 (Oct 2000-May 2001)	74	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2003) NIST mixed stain study 3: DNA quantitation accuracy and its influence on short tandem repeat multiplex signal intensity. Anal. Chem. 75: 2463-2469. Duewer, D.L., Kline, M.C., Redman, J.W., Butler, J.M. (2004) NIST Mixed Stain Study 3: signal intensity balance in commercial short tandem repeat multiplexes, Anal. Chem. 76: 6928-6934.
DNA Quantitation Study (Jan-Mar 2004) QS04	80	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2005) Results from the NIST 2004 DNA Quantitation Study, <i>J. Forensic Sci.</i> 50(3):571-578
Mixture Interpretation Study (Jan - Aug 2005) MIX05	69	Data analysis currently on-going Poster at 2005 Promega meeting (Sept 2005); available on STRBase

October 23, 2006

Overall Lessons Learned from NIST MSS 1,2,&3


- Laboratories have instruments with different sensitivities
- Different levels of experience and training plays a part in effective mixture interpretation
- Amount of input DNA makes a difference in the ability to detect the minor component (labs that put in "too much" DNA actually detected minor components more frequently)

Purpose of MIX05 Study

- Goal is to understand the "lay of the land" regarding mixture analysis across the DNA typing community
- One of the primary benefits we hope to gain from this study is recommendations for a more uniform approach to mixture interpretation and training tools to help educate the community

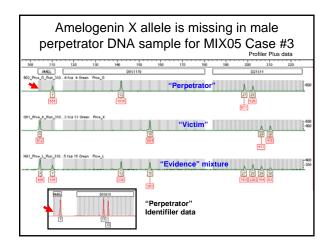
Mixture Interpretation Interlab Study (MIX05) Only involves interpretation of data – to remove instrument detection variability and quantitation accuracy issues 4 labs enrolled for participation 6 gl labs have returned results (17 from outside U.S.) Four mock cases supplied with "victim" and "evidence"

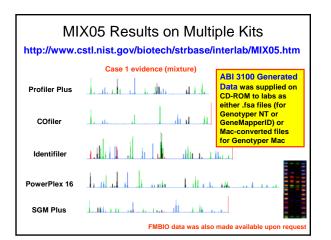
- electropherograms (GeneScan .lsa files that can be converted for Mac or GeneMapper; gel files made available to FMBIO labs)
- Data available with Profiler Plus, COfiler, SGM Plus, PowerPlex 16, Identifiler, PowerPlex 16 BIO (FMBIO) kits
 Summers of results will involve training materials to
- Summary of results will involve training materials to illustrate various approaches to solving mixtures

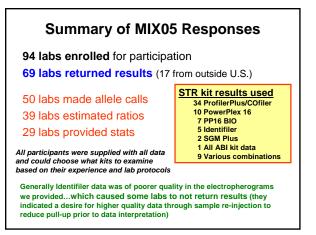
MIX05 Study Design and Purpose Interlab studies provide a "big picture" view of the community

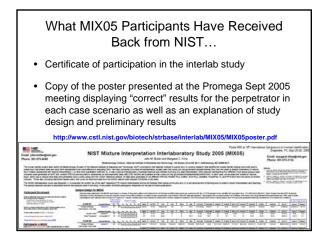
- Permit a large number of forensic practioners to evaluate the same mixture data
- · Provide multiple cases representing a range of mixture scenarios
- Generate data from multiple STR kits on the same mixture samples to compare performance for detecting minor components
- The primary variable should be the laboratory's interpretation guidelines rather than the DNA extraction, PCR amplification, and STR typing instrument sensitivity
- Are there best practices in the field that can be advocated to others?

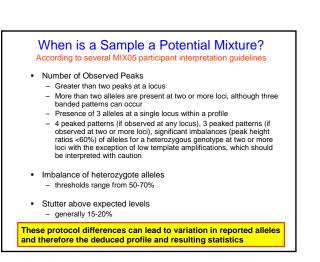
Requests for Participants in MIX05 Mixtures representing four different case scenarios have been generated at NIST with multiple STR kits and provided to laboratories as electropherograms. We would like to receive the following information: 1) Report the results as though they were from a real case including whether a statistical value would be attached to the results. Please summarize the perpetrator(s) alleles in each "case" as they might be presented in court—along with an appropriate statistic (if warranted by your laboratory standard operating procedure) and the source of the allele frequencies used to make the calculation. Please indicate which kit(s) were used to solve each case.


- 2) Estimate the ratio for samples present in the evidence mixture and how this estimate was determined.
- 3) **Provide a copy of your laboratory mixture interpretation guidelines** and a brief explanation as to why conclusions were reached in each scenario


A MIX05 Participant Noted...


"Things we do not do:


- Calculate mixture ratios for casework
 Calculation used for this study: Find loci with 4 alleles (2 sets of sister alleles). Make sure sister alleles fall within 70%, then take the ratio of one allele from one sister set to one allele of the second sister set, figure ratios for all combinations and average. Use peak heights to calculate ratios.
- Provide allele calls in reports
- Provide perpetrator(s) alleles or statistics in court without a reference sample to compare to the DNA profile obtained from the evidence. We will try to determine the perpetrator(s) profile for entry into CODIS."
- We recognize that some of the information requested in this interlab study may not be part of a lab's standard operating procedure


MIX05 Case Sce			-				
Ba		on Id Ieles				TR I	
Genomic DNA samples with specific allele combinations ("evidence") were mixed in the	N	N	N	N	Ν	N	N
following ratios:	all	unq	1	2	3	4	5
Case #1 – victim is major contributor (3F:1M)	39	26	2	6	5	2	0
Case #2 – perpetrator is major contributor (1F:3M)	55	52	0	1	4	10	0
Case #3 – balanced mixture (1F:1M) • Male lacked amelogenin X	48	37	0	3	8	4	0
Case #4 – more extreme mixture (7F:1M) • Male contained tri-allelic pattern at TPOX	50	42	0	3	7	4	1
Female victim DNA profile was sup Labs asked to deduce the perpetrator DNA profile	•						

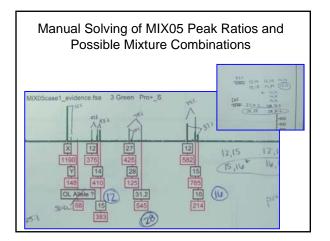
CASE #2	2779819	D3S1358 15.15	VWA	FGA 20.24	AMEL	D8S1179 11.13	021S11 28.32.2	D18551	D55818	D13S317	075820 8.10	D165539	TH01 7.9.3		CSF1P0 7.10
LabID	Kit Used			-											
16	ProPlus/Coffer	-					-		-		-		-		
6	ProPlus/Cofiler	15	15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
91	SGM Plus	15	15	20,24	XY	11,13	28,32.2	17,18				10,11	7,9.3		
46	PP16	-					-								
37	ProPlus/Cofiler		15	20	X,Y	13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
2	PP16	15	15,15	20,24	XY	11,13	28,32.2	17,18	8,13	INC	8,10	10,11	7,9.3	9,10	7,10
13	PP16 & Identifiler	15	15	20,24		11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
34	ProPlus/Cofiler	15	15	20,24		11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
70	Identifiler	15	15	20,24	X,Y	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
55	ProPlus/Cofiler	15	15	20,24		11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
21	ProPlus/Cofiler	15,15	15,15	20,24	XY	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
73	ProPlus/Cofiler	15,15	15,15		X,Y	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
29	Identifiler	15	15	20,24	XY	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
64	All Kits	15,15	15,15	20,24	X,Y	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
90	ProPlus/Cofiler	15	15	20,24	XY	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
9	ProPlus/Cofiler	15	15	20,24	X,Y	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
- 4	ProPlus/Cofler	15	15	20,24	X,Y	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
33	ProPlus/Cofiler	-					-				-		-	-	
12	ProPlus/Cofiler	15	15	20,24	XY	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
67	PP16	15			XY	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
86	ProPlus/Cofiler	15,15	15,15			11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
79	ProPlus/Cofiler	15,15	15,15	20,24		11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
77	Identifiler	-				-	-		-		-		-	-	
60	PP16	15	15	20,24	X,Y	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
61	ldentifiler	-					-				-		-		

13 34 70 55 21 73 29 54 90	2 1.8-3.6 68%:32% 2:1 2:1	5 3.96.7 85%:15% 6:1 6:1	<2 1.61.8 64%:36% 2:1 2:1	10 6.27.6 not determined 6:1
70 55 21 73 29 54	68%:32% 2:1 2:1	85%:15% 6:1	64%:36% 2:1	not determined
55 21 73 29 54	2:1	6:1	2:1	
21 73 29 54	2:1	6:1	2:1	
73 29 54	2:1			
29 54	2:1			
54		6:1	2.1	C-4
		6:1	2.1	C-4
90				0:1
	male23-39%	not determined	male64-71%	
9	3 or 4:1	4 or 5:1	1.4:1	~10:1
4	10:1	6:1	1:1	not determined
33	male60-78%	male80-90%	male58-71%	victim86%
12	male25%	male85%	male40-45%	unknown10%
67	1:2.3	6.4:1	2:1	1:6.8
86	2:1	6-6.5:1	1.6-2:1	4-4.5:1
79	~3:1 to ~2:1	~6:1 to ~4:1	~2:1*	a lot of victim
77				
60	2:1	5:1	2:1	10:1
	12 67 86 79 77 60	12 male25% 67 1:2.3 86 2:1 79 ~3:1 to ~2:1 77	12 male25% male85% 67 1:2.3 6.4:1 86 2:1 6-6.5:1 79 ~3:1 to ~2:1 ~6:1 to ~4:1 77 ~ 60 2:1 5:1	12 male25% male25% male25% male40-45% 67 1:2.3 6.4:1 2:1 86 2:1 6-6.5:1 1:6-2:1 79 ~3:1 to ~2:1 ~6:1 to ~4:1 ~2:1* 77 6:1 5:1 2:1

ſ

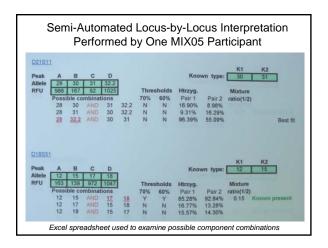
S	ome Repor	ted Stats	for MIX05 Ca	ase #1
	Many of the 29 I	abs providing st	atistics used PopSt	ats 5.7
			Case1	
LabID	Kits Used	Caucasians	African Americans	Hispanics
77	Identifiler	PE calculated	PE calculated	PE calculated
73	ProPlus/Cofiler	none provided	none provided	none provided
4	ProPlus/Cofiler	none provided	none provided	none provided
12	ProPlus/Cofiler	none provided	none provided	none provided
29	Identifiler	none provided	none provided	none provided
90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10
46	PP16	5.60E+09	3.80E+11	none provided
33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000
9	ProPlus/Cofiler	1.14E+07	1.97E+07	1.54E+08
61	Identifiler	1.50E+06	260,000	2.40E+07
79	ProPlus/Cofiler	930,000	47,900	1,350,000
16	ProPlus/Cofiler	434,600	31,710	399,100

ę	Some Differe	nces in F	Reporting Stat	istics
			Case1	
LabID	Kits Used	Caucasians	African Americans	Hispanics
90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10
33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000
9	ProPlus/Cofiler	1.14E+07	1.97E+07	1.54E+08
79	ProPlus/Cofiler	930,000	47,900	1,350,000
16	ProPlus/Cofiler	434,600	31,710	399,100
_	based on which	alleles were	difference (10 ⁵ to e deduced and re	eported
			abs are interpi ctropherogran	0

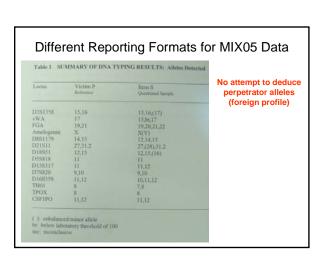

Questions for Consideration

- Do you look at the evidence data first without considering the suspect's profile?
- Without a suspect, does your lab proceed with mixture interpretation?
- Do you have a decision point whereby you consider a mixture too complicated and do not try to solve it? If so, is the case declared inconclusive?
- What kind of training materials would benefit your lab in improving consistency in mixture interpretation?

Examples of MIX05 Report Formats

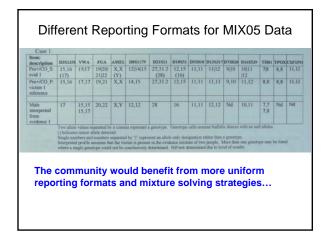

All examples with Case #1

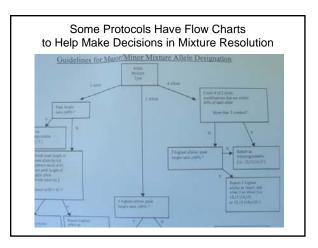
(~3:1 mixture with female victim as the major component – and victim profile is provided)



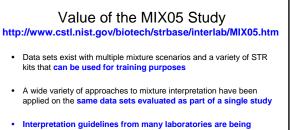
Locus	Allele	Peak height	Com profiles to ob	wihle ponent giving rise served sture	Comments
Do	12 15	563 244	1L	12,12 12,15	23/ Arran # 90% +* (235 mt Selend) her ar alon making F militain
Dar	27 21 27 30	1,37 2,67 155' 144	27,25	23,28	J produceg rely 2 traditions <u>251+227</u> <u>251-227-15</u> <u>251-227-15</u> <u>251-227-15</u> <u>251-227-15</u> <u>251-227-15</u> <u>251-227-15</u> <u>251-227-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15 <u>251-27-15</u> <u>251-27-15 <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15 <u>251-27-15</u> <u>251-27-15 <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15</u> <u>251-27-15 <u>251-27-15</u> <u>251-27-15 <u>251-27-15</u> <u>251-27-15 <u>251-27-15 <u>251-27-15 <u>251-27-15 <u>251-2</u></u></u></u></u></u></u></u></u></u></u>
Do	12 14 17	287 231 463	14	a. 14 14. 14 14. 19	$\begin{array}{l} \displaystyle \frac{d}{d} = 2_{1} (0) , g \ p \ b \ b \ b \ a \ a \ b \ a \ \ a \ \ a \ a \ \ a \ \ a \$
	1.00	367	.ii	10,10	Longymen, 7 mg

D891179	55	1081		+264			
D21511	28	132					314/104 = 0.1108
D21911	30	164.5					
D21811 D21511	31 32.2	89 5	mines	253	totals	. 2236	299/2200 = 0.1122
D18551	12	162					
D18551	15	130	minste	300	+ bet +	2297	34/241 = 0.1305
D18951 D18951	17	064					10-11-2-12-12-12-12-12-12-12-12-12-12-12-1
DSS818		1060			12020-000		
D55818 D55618	11 12	140	miller + miller + tr +	372	10 40 - 243.	2228	
056818	13	843	\$+ (10) - 4				755/4415 0.1364
D13\$317		129	-	270			
D135317 D135317	12	141 905			label "	1002	3-70/442-0.1039
D138317	14	817			fame .	1842	Aug. 6.1039
075820		687			Ashel-	1010	204 / 0.1011
D75820 D75820	10	155	94. CIT) -	253	687268730	1+	154
D75820	11	68	10.000 - OF 6				1
D351358	15 18	1543		0.00	401-2	1667	348/467 = 0.7488
D165539	9	202	and the state	101			
D189539	10	1420	+ + + (1) + 70		the		0.1278
D165539	11	1337		404	1 Aud # 1337 *	4+4+	And / 5141
TH01		709			14.0	1667	4.5/1597 = 0.1075
TH01		87	-	188	detter	1000	1597 8




			110	ρo	rtir	ŋg	For	m	ats	VIIZ	<u>~</u> 0.	ata
1	NIST	MIXE	6 Cane 1.			ii of Pox	er Plan to					
Lat	Victore	ň.,	Perpet- rator	*	Cavel- denia	**	Ave ape Hats (AP)	-m	Three Select			
CIBINOR	15	374	111	210	H	3.55	3.65 1	0.10	0.027			
19401	8	274	1	1	**	2.74	274 1	144				
D2+br+	27	1.40	- 20	07	1	280	200.1	007	101			
CHINDER	10	3.19	15	1		3.10	327:1	0.00	8.004			
Dent	2	114	1	1		224	100.1	625	11.120			
000818	11	NA	11	NA	- H	NA	TIA .	714				
0136317	11	2.07	11 12		H	2.07	207.1	NA.				
1070620	11	+	10	0.44	.H. -H	227	2 27 1	144	-			
DHOUN	10 11	1 2.24	10	0.44	H	2.24	2.58 1	0.05	100			
C3F1PO	17	2.12	11	1 100	- 11	212	14	144				
Period 2	14 0	1 231 231	9 3 8 .	157	-	2.50 2.31 1.96		111				
AWY	17	177	15	1	**	177	177:1	764	2			
DM01179	14	117	12	05		234	2.24 1	0.10	0045			
TPOX	0	NA	0	NA	H	NA	HA.	164	- 57			
Amatquein	X	130	X	:		1.30	130:1	NA.	1			
FGA	19 21	304	20 22	1 123	11	3(A 2.47 2.35	244.1	0.40	0.104			

LOCI	CODIS ENTRY * obligate allele	OTHER ALLELE'S IN SUSPECT'S POSSIBLE PROFILE
D3S1358	17	16,17
VWA	15*	15,17
FGA	20.22	20,22
D8S1179	12	12,12
D21S11	28*	28,31.2
D18S51	15*	15,16
D5S818	-	
D13S317	12	12.12
D7S820		10
D16S539	10,11*	10,11
THO1	7*	7,8 maybe
TPOX	8	8 maybe
CSF1PO	-	11,12 maybe


	llems						
Locus	"S" Case 1 Evid.	"P" Case 1 Victim					
351358	15, 16, *	15, 16					
165539	(10), 11, (12)	11, 12					
AMEL	X, '	X					
THO1	(7), 8	8					
TPOX	8	8					
SF1PO	11, 12	11, 12					
D75820	9, 10	9, 10					
VWA	(15), 17	17					
FGA	19, 20, 21, 22	19, 21					
08S1179	12, 14, 15	14, 15					
D21S11	27, 31.2,*	27, 31.2					
D18S51	12, 15, (16)	12, 15,					
D55818	11	11					
0138317	11, 12	11					

Some Labs Do Not Attempt Mixture Interpretation

- A number of laboratories chose not to report anything in the MIX05 study citing that without a suspect, mixtures are not examined.
- Why does a National DNA Database such as CODIS exist and how can it be helpful and reach its full potential if casework mixtures are not examined and perpetrator alleles deduced (where possible)?

- compared to one another for the first time in an effort to determine challenges facing future efforts to develop "expert systems" for automated mixture interpretation
- We are exploring the challenges of supplying a common data set to a number of forensic laboratories (e.g., if a standard reference data set was ever desired for evaluating expert systems)

October 23, 2006

J.M. Butler – Mixture Interpretation: Lessons from Interlab Study MIX05 (National CODIS Conference, Arlington, VA)

Conclusions (Opportunities for Improvement)

- It is worth taking a closer look at protocol differences between labs to see the impact on recovering information from mixture data
- Expert systems (when they become available and are used) should help aid consistency in evaluating mixtures and help produce more uniform reporting formats

Software Programs (Expert Systems) for Mixture Deconvolution

These programs do not supply stats (only attempt to deduce mixture components) Linear Mixture Analysis (LMA)

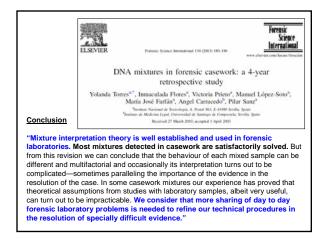
 Part of TrueAllele system developed by Mark Perlin (Cybergenetics)
 Perlin, M. W. and Szabady, B. (2001) Linear mixture analysis: a mathematical approach to resolving mixed DNA samples. *J.Forensic Sci.* 46(6): 1372-1378

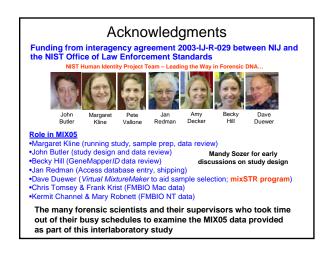
Least Squares Deconvolution (LSD)

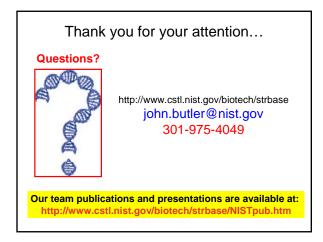
Described by T. Wang (University of Tennessee) at Oct 2002 Promega meeting
 Available for use at https://isd.lit.net/

PENDULUM

Part of FSS i-3 software suite (i-STReam)
 Bill, M., Gill, P., Curran, J., Clayton, T., Pinchin, R., Healy, M., and Buckleton, J. (2005) PENDULUM-a guideline-based approach to the interpretation of STR mixtures. Forensis Sci. Int. 148(2-3): 181-189


USACIL program developed by Tom Overson


Future Plans


- Develop training information based on lessons learned from the MIX05 study
- Create other useful software tools like mixSTR and Virtual MixtureMaker to increase mixture interpretation capabilities of the forensic DNA typing community
- Conduct another interlab study in 2007 (MIX07)?
 To try and capture improved knowledge regarding mixture interpretation and capabilities of expert systems

Some Final Thoughts...

- It is of the highest importance in the art of detection to be able to recognize out of a number of facts, which are incidental and which vital. Otherwise your energy and attention must be dissipated instead of being concentrated (Sherlock Holmes, *The Reigate Puzzle*).
- "Don't do mixture interpretation unless you have to" (Peter Gill, Forensic Science Service, 1998).
- Mixture interpretation consumes a large part of DNA analysts' time – software tools that improve consistency in analysis will speed casework reporting and hopefully cases solved

