

Rapid DNA Testing Approaches for Reference Samples

Erica L.R. Butts and Dr. Peter M. Vallone

National Institute of Standards and Technology

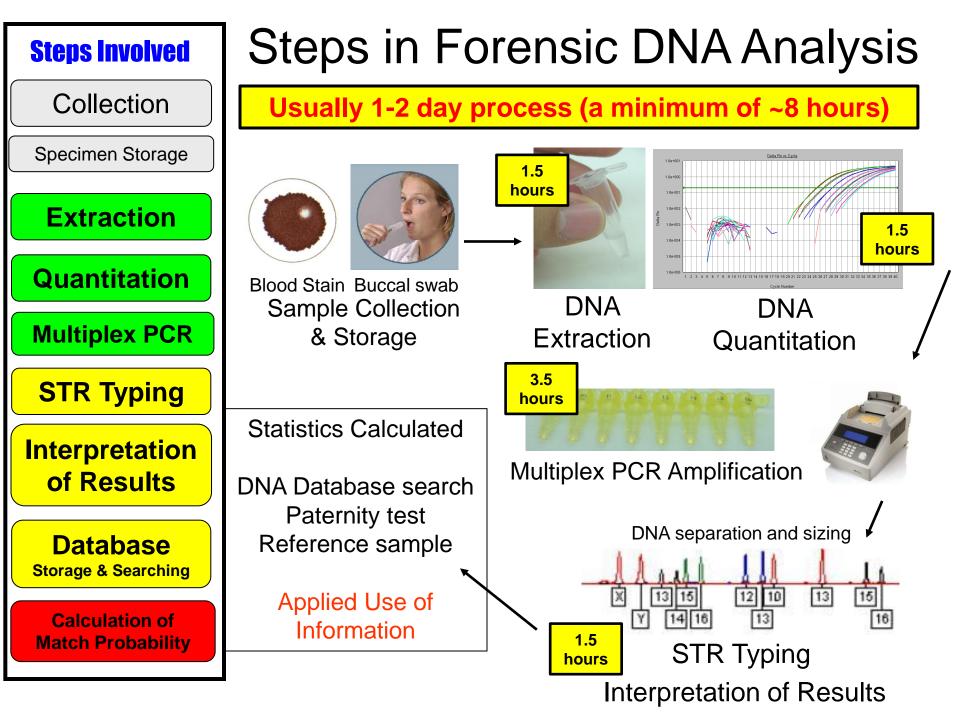
Mid-Atlantic Association of Forensic Scientists May 16, 2011 Ellicott City, MD

NIST Disclaimer

Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Points of view are mine and do not necessarily represent the official position of the National Institute of Standards and Technology.

Outline


- Applications of Human Identity Testing
- Current DNA typing process

 Time and limiting factors
- Benefits of rapid DNA typing
- Current rapid advancements
- How fast am I?
 - Using current laboratory equipment and supplies to type reference samples (buccal)

Applications of Human Identity Testing

- Forensic cases -- matching suspect with evidence
- Paternity testing -- identifying father
- Missing persons investigations
- Military DNA "dog tag"
- Convicted felon DNA databases
- Mass disasters -- putting pieces back together
- Historical investigations and genetic genealogy

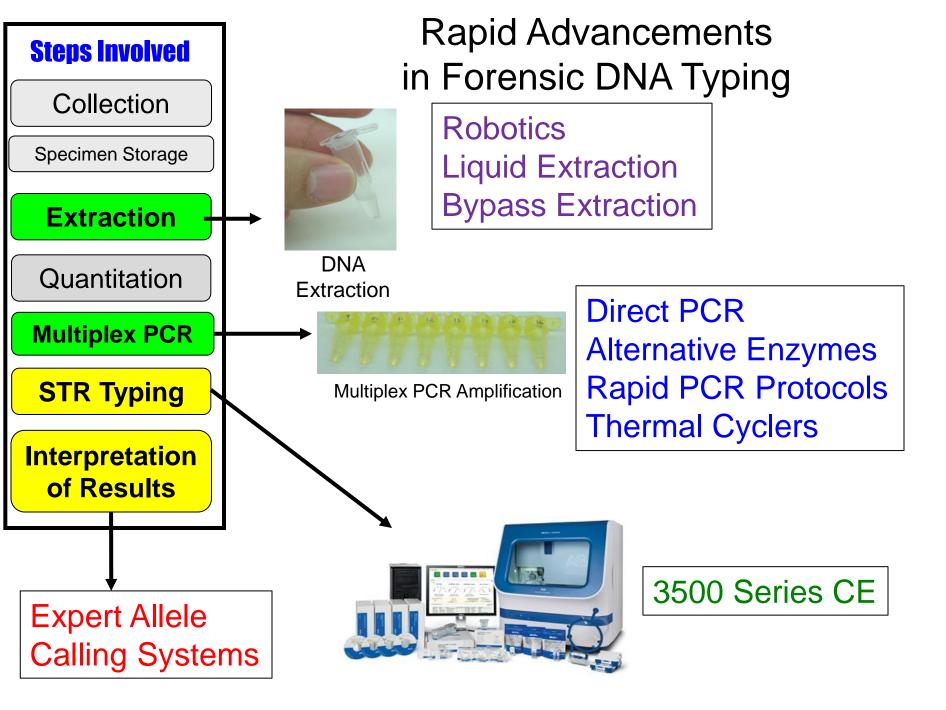
Involves generation of DNA profiles usually with the same core STR (short tandem repeat) markers and then MATCHING TO A KNOWN SAMPLE

Applications of Rapid DNA Typing

- Goal of obtaining a STR profile in less than 2 hours from collection
 - <u>Single-source reference samples</u>
- Fully integrated devices in development
- Decrease overall DNA typing times within a laboratory setting
 - Involves non-integrated laboratory equipment and techniques
- Time requirements for forensic DNA typing are being significantly reduced

Interest for Rapid DNA Typing

- Several agencies have an interest in rapid DNA typing technologies
 - DoJ: law enforcement, initial information (investigative leads), booking stations
 - **DoD**: field testing, rapid intelligence, mass fatalities
 - DHS: kinship determination, border security, immigration
 - Industry: security, authentication


Rapid DNA Typing

Fully Integrated Technology

- Portable rapid DNA typing device
- Sample in Answer out
- Extraction to STR profile within one system
- No user interaction or manual liquid handling
- No need for expertise training •
- Several current companies working on this technology

Non-Integrated Technology

- Employs traditional bench top science
- Current equipment and personnel are in place
- Modifications to current protocols and techniques to reduce time
- Several liquid handling steps
 - Requires the use of multiple instrument platforms
- Requires expertise training

Rapid Advancement: Extraction

- Liquid-Based Extraction
- Thermostable proteinase controlled by a temperature shift regime
 - DNA is released while contaminating nucleases are inactive
- Typically yields between 0.5-2.0 ng/µL

Int J Legal Med (2003) 117:340–349 DOI 10.1007/s00414-003-0400-9

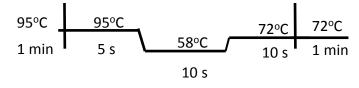
ORIGINAL ARTICLE

D. Moss · S.-A. Harbison · D. J. Saul

An easily automated, closed-tube forensic DNA extraction procedure using a thermostable proteinase


Received: 23 April 2003 / Accepted: 14 August 2003 / Published online: 23 October 2003 © Springer-Verlag 2003

Rapid Advancement: Amplification

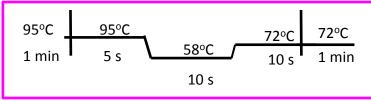

- Alternate DNA Polymerases
 - Faster and more robust
 - Ability to overcome PCR inhibitions
 - 2-5x faster processivity than Taq Gold
 - 1-5 minute hot start
 - Limited post cycling soak
- Direct PCR
 - Bypasses extraction and quantitation
 - Sample (blood or buccal punch) directly into PCR master mix for amplification
 - 1.5 hours (PowerPlex 18D) to 2.5 hours (Identifiler Direct) for amplification

Rapid PCR Protocols

Rapid PCR with alternate polymerases

Rapid PCR Protocols: Thermal Cyclers

GeneAmp 9700 (Applied Biosystems)


Heating rate: 4°C/s Heating mechanism: Peltier block (Al) Tube format: 0.2 mL 96 reactions per instrument 28 cycles = 36 min

Mastercycler Pro (Eppendorf)

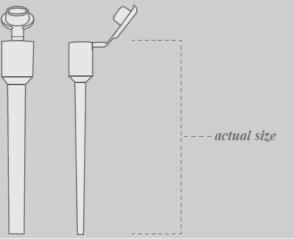
Heating rate: 6°C/s Heating mechanism: Peltier block (Ag) Tube format: 0.2 mL 96 reactions per instrument 28 cycles = 19 min

Rapid PCR Protocols: Thermal Cyclers

SmartCycler (Cepheid)

Heating rate: 10°C/s
Heating mechanism: heating plates and air circulating fan
Tube format: proprietary 25 μL tubes
16 reactions per instrument
28 cycles = 20 min

Rotor-Gene Q (Qiagen)


Heating rate: 15°C/s Heating mechanism: Air chamber (spinning rotor) Tube format: 0.1 mL 72 tube reactions per instrument 28 cycles = 36 min

Rapid Advancement: Thermal Cyclers Streck Philisa

Heating rate: 15°C/s Heating mechanism: Peltier block (Al) Tube format: proprietary 50 μL tubes 8 reactions per instrument 28 cycles = 14 min

Philisa PCR Tubes - 50µl Efficient Heat Transfer for Rapid Amplification

Require the use of gel loading tips to load PCR product into CE setup plate due to tube design

Comparative Throughput (Cycling)

i.

Cycler		# Samples	Fastest Cycling Time (min)	Runs to Complete 96 Samples	Cycling time for 96 Samples (min)
[9700	96	36	1	36
	Smart Cycler	16	20	6	120
	MasterCycler	96	16	1	16
	Rotor-Gene	72	36	2	72
[Phisila	8	14	12	168

While cycling times may be rapid, the throughput in some cases is reduced from the standard 96-well format

Separation and Detection

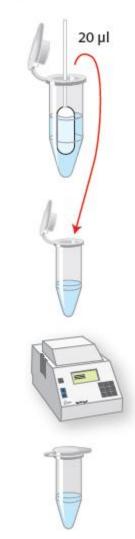
31xx Series

- 4 capillaries
- 16 capillaries
- 48 minutes per run
- GeneMapper ID 3.2

3500 Series

- 8 capillaries
- 24 capillaries
- 36 minutes per run
- Requires GeneMapper IDX v1.2

How Fast Am I?


Experimental Design

- Timed testing from sample collection to finalizing data processing
- 8 Buccal swabs evaluated for all testing
 - Rapid sampling and non-invasive
 - 3500 is an 8-capillary
 - Phisila amplifies 8 samples at a time
- Liquid Extraction protocol tested
 - Zygem Saliva Kit
- Direct PCR tested
 - PowerPlex 18D
- Two thermal cyclers evaluated
 - Applied Biosystems 9700
 - Streck Phisila

ZyGEM Liquid-Based Extraction

Saliva Kit

- Buccal swab washed with 500 µL DNA-free H₂0
- 20 µL solution added to reaction
- 75 C Incubation
- 95 C Incubation
- 2 µL solution added to PCR reaction

PCR Setup

Rapid Identifiler

- 2 µL ZyGEM extraction solution
- 2 µL Identifiler Primers
- 5 µL Takara Perfect Real Time Mix
- 0.25 µL Takara
 Polymerase
- 0.75 µL Water

PowerPlex 18D

- One 1.2 mm punch from a Whatman Easicollect
- 5 µL PowerPlex 18D Primers
- 5 µL PowerPlex 18D Master Mix
- 15 µL Water

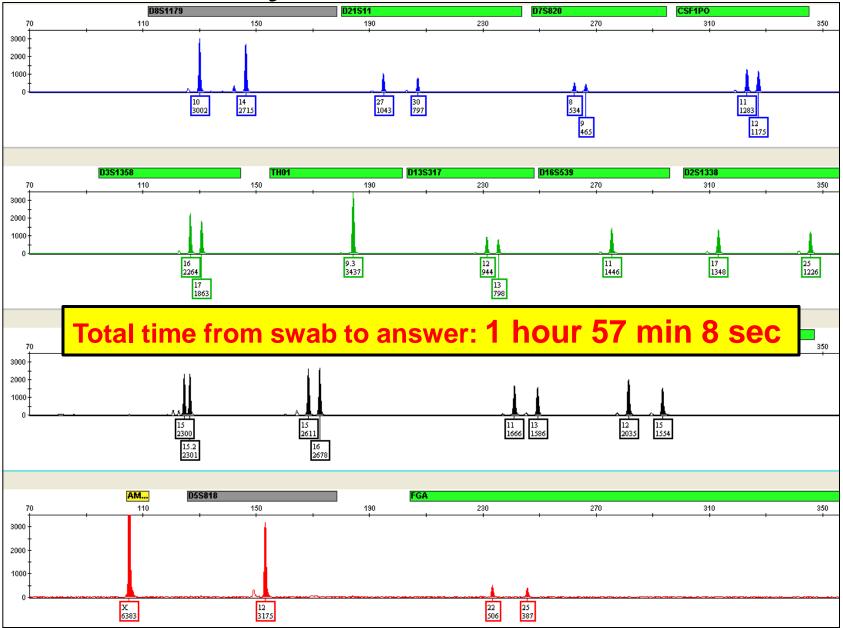
Amplification on the ABI 9700 and Streck Phisila Amplification on the ABI 9700

Separation and Detection Setup

- 1 µL of each amplified product was diluted in 8.5 µL HiDi, 0.5 µL GeneScan LIZ 600 v2.0 (Identifiler)
- 1 μL of each amplified product was diluted in 10 μL HiDi, 0.5 μL CC5 ILS 500 (PowerPlex 18D)
- Separated on ABI 3500 Genetic Analyzer
- 8 capillary 36 cm array with POP-4
- Injected at 1.2 kV for 7 seconds
- GeneMapper ID-X v1.2

How Fast Am I: ZyGEM 9700?

Extraction Setup	6 min	
Extraction	20 min	
PCR Setup	7 min 18 sec	
PCR	36 min	
3500 Setup	4 min 50 sec	
3500 Run	38 min	
Data Analysis	5 min	
Final: 1 hour 57 min 8 sec		

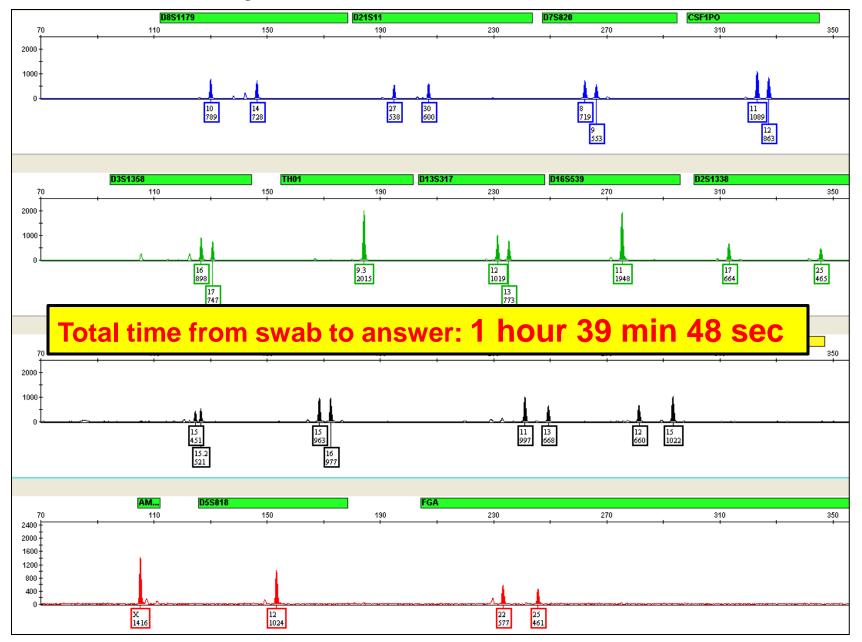

FOR 8 SAMPLES

This protocol allowed for the use of multichannel and automatic pipettes for setup of extraction and PCR

ZyGEM & 9700

How Fast Am I: ZyGEM & Phisila?

Extraction Setup	6 min	
Extraction	20 min	
PCR Setup	6 min 48 sec	
PCR	14 min	
3500 Setup	10 min	
3500 Run	38 min	
Data Analysis	5 min	
Final: 1 hour 39 min 48 sec		


FOR 8 SAMPLES

Time consuming part: transfer of PCR product into 96-well plate for CE due to the use of gel loading tips and individual transfer

ZyGEM & Phisila

How Fast Am I: PP18D & 9700?

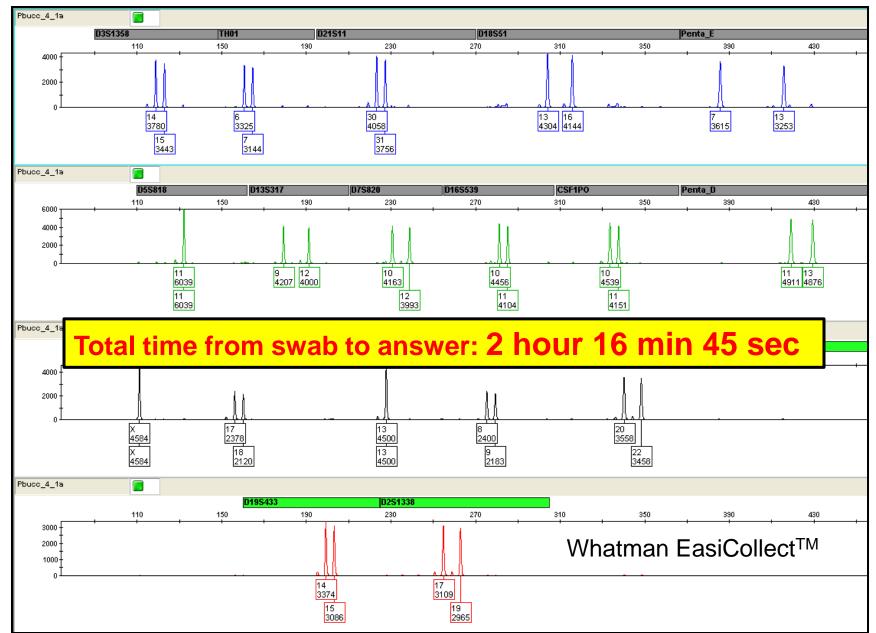
Extraction Setup	NONE
Extraction	NONE

PCR Setup	3 min 5 sec
PCR	1 hour 25 min

3500 Setup	4 min 50 sec
3500 Run	38 min

Data Analysis

5 min


Final: 2 hour 16 min 45 sec FOR 8 SAMPLES

This protocol allowed for the use of multichannel and automatic pipettes for setup of extraction and PCR

PP18D & 9700

Decrease DNA Typing Time

- Eliminate standard extraction protocols
 - Direct PCR for elimination of extraction and quantitation (90 min PCR)
 - Liquid extraction as a alternative to robotic or manual extraction of buccal swabs (20 min extraction)
- Rapid PCR cycling conditions
 - Employ alternate polymerases and thermal cyclers (14-36 min PCR)
 - Throughput may vary for cyclers resulting in increased overall cycling times for standard 96well CE setup (8-96 samples)

Conclusions

- Several areas exist to decrease the time for DNA typing
- Most common approach is to reduce thermal cycling parameters
- STR genotype results were generated in less than 2 hours
 - With standard laboratory equipment and protocols
 - Overall time includes: collection, sample handling, and liquid transfer steps

Future work

- Test additional forms of rapid extraction

 Additional liquid extraction kits/enzymes
- Test additional thermal cyclers
 - Optimization of rapid PCR protocols
 - Development of additional rapid PCR protocols with additional STR typing kits
- Optimization of rapid direct protocols

Acknowledgments

NIST Team for This Work

Funding from the **FBI Biometrics Center of Excellence** 'Forensic DNA Typing as a Biometric Tool'

Pete Vallone

Becky Hill

Funding from the National Institute of Justice (NIJ) through NIST Office of Law Enforcement Standards

Contact Info: erica.butts@nist.gov 301-975-5107

SAVE THE DATE Forensic Science research at NIST

Date: November 28-30th, 2012 Time: 9:00 am to 5:00 pm Location: NIST (Gaithersburg, Maryland)

FORENSIC SCIENCES For more information:

www.nist.gov/oles/forensics-2012.cfm

Note: registration is required