

Presentation Format

Opening Remarks (~15-20 minutes):

- · Mixtures: what are they and why are they challenging?
- Review of NIST mixture studies and lessons learned
- Observations from MIX05 Interlaboratory Study

Open Discussion (~15-20 minutes):

Questions and Responses from audience

Summary (~5 minutes):

Tools available and planned to aid mixture interpretation

Mixtures: Issues and Challenges

From J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, p. 154

- Mixtures arise when two or more individuals contribute to the sample being tested.
- Mixtures can be challenging to detect and interpret without extensive experience and careful training.
- Differential extraction can help distinguish male and female components of many sexual assault mixtures.

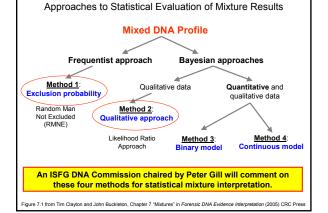
Mixtures: Issues and Challenges

From J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, p. 155

- The probability that a mixture will be detected improves with the use of more loci and genetic markers that have a high incidence of heterozygotes.
- The detectability of multiple DNA sources in a single sample relates to the ratio of DNA present from each source, the specific combinations of genotypes, and the total amount of DNA amplified.
- Some mixtures will not be as easily detectable as other mixtures.

When is a Sample a Potential Mixture? According to several MIX05 participant interpretation guidelines

- Number of Observed Peaks
 - Greater than two peaks at a locus
 More than two alleles are present at two or more loci, although three banded patterns can occur
 - Presence of 3 alleles at a single locus within a profile
 - 4 peaked patterns (if observed at any locus), 3 peaked patterns (if observed at two or more loci), significant imbalances (peak height ratios <60%) of alleles for a heterozygous genotype at two ore more loci with the exception of low template amplifications, which should be interpreted with caution
- Imbalance of heterozygote alleles


 thresholds range from 50-70%
- Stutter above expected levels

 generally 15-20%

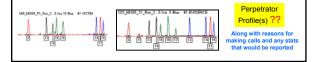
Two Parts to Mixture Interpretation Deduction of alleles present in the evidence (compared to victim and suspect profiles) Providing some kind of statistical answer regarding the weight of the evidence An ISFG DNA Commission (Peter Gill, Bruce Weir, Charles Brenner, etc.) is evaluating the statistical

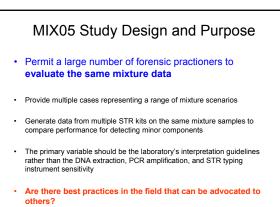
approaches to mixture interpretation and will make

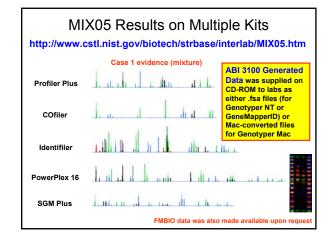
recommendations soon

Two Parts to Mixture Interpretation Deduction of alleles present in the evidence (compared to victim and suspect profiles) Providing some kind of statistical answer regarding the weight of the evidence An ISFG DNA Commission (Peter Gill, Bruce Weir, Charles Brenner, etc.) is evaluating the statistical approaches to mixture interpretation and will make recommendations soon

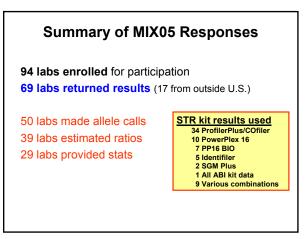
NIST Initiated Interlaboratory Studies


Studies involving STRs	# Labs	Publications
Evaluation of CSF1PO, TPOX, and TH01	34	Kline MC, Duewer DL, Newall P, Redman JW, Reeder DJ, Richard M. (1997) Interlaboratory evaluation of STR triplex CTT. <i>J. Forensic Sci.</i> 42: 897-906
Mixed Stain Studies #1 and #2 (Apr–Nov 1997 and Jan–May 1999)	45	Duewer DL, Kline MC, Redman JM, Newall PJ, Reeder DJ. (2001) NIST Mixed Stain Studies #1 and #2: interlaboratory comparison of DNA quantification practice and short tandem repeat multiplex performance with multiple-source samples. J. <i>Forensis Sci.</i> 46: 1199-1210
MSS3 Mixed Stain Study #3 (Oct 2000-May 2001)	74	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2003) NIST mixed stain study 3: DNA quantitation accuracy and its influence on short tandem repeat multiplex signal intensity. Anal. Chem. 75: 2463-2469. Duewer, D.L., Kline, M.C., Redman, J.W., Butler, J.M. (2004) NIST Mixed Stain Study #3: signal intensity balance in commercial short tandem repeat multiplexes, Anal. Chem. 76: 6928-6934.
DNA Quantitation Study (Jan-Mar 2004) QS04	80	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2005) Results from the NIST 2004 DNA Quantitation Study, J. Forensic Sci. 50(3):571-578
Mixture Interpretation Study (Jan - Aug 2005)	69	MIX05 Data analysis currently on-going


Overall Lessons Learned from NIST MSS 1,2,&3

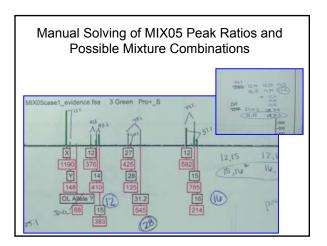

- Laboratories have instruments with different sensitivities
- Different levels of experience and training plays a part in effective mixture interpretation
- Amount of input DNA makes a difference in the ability to detect the minor component (labs that put in "too much" DNA actually detected minor components more frequently)

Mixture Interpretation Interlab Study (MIX05)


- Only involves interpretation of data to remove instrument detection variability and quantitation accuracy issues
- · 94 labs enrolled for participation
- 69 labs have returned results (17 from outside U.S.)
- Four mock cases supplied with "victim" and "evidence" electropherograms (GeneScan .fsa files – that can be converted for Mac or GeneMapper; gel files made available to FMBIO labs)
- Data available with Profiler Plus, COfiler, SGM Plus, PowerPlex 16, Identifiler, PowerPlex 16 BIO (FMBIO) kits

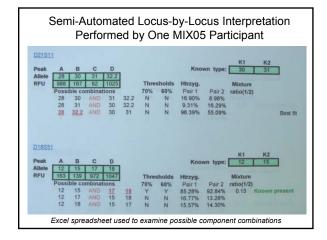
Requests for Participants in MIX05 Mixtures representing four different case scenarios have been generated at NIST with multiple STR kits and provided to laboratories as electropherograms. We would like to receive the following information: 1) Report the results as though they were from a real case including whether a statistical value would be attached to the results. Please summarize the perpetrator(s) alleles in each 'case' as they might be presented in court—along with an appropriate statistic (if warranted by your laboratory standard operating procedure) and the source of the allele frequencies used to make the calculation. Please indicate which kit(s) were used to solve each case. 2) Estimate the ratio for samples present in the evidence mixture and how this estimate was determined. 3) Provide a copy of your laboratory mixture interpretation guidelines and a brief explanation as to why conclusions were reached in each scenario

CASE #2	2779819	D3S1358 15.15	VWA	FGA 20.24	AMEL	D8S1179	021S11 28.32.2	D18551 17,18	055818 8.13	D13S317 12.14	075820 8.10	D165539 10.11	TH01 7.9.3	9.10	CSF1P0 7.10
LabID	Kit Used	13,13	10,10	20,24	14,1	11,13	20,02.2	11,10	0,10	14.114	0,10	10,11	1,0.0	5,10	1,10
16	ProPlus/Cofiler	-				-									
6	ProPlus/Coffee	15	15	20.24	XY	11.13	28.32.2	17,18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
91	SGM Plus	15	15	20,24	XY	11,13	28,32.2	17,18	0,13	12,14	8,10	10,11	7,9.3	9,10	7,10
46	PP16	10		20,24	~ .	11,15	20,04.4	17,10				10,11	100		
37	ProPlus/Cofiler		15	20	XY	13	28.32.2	17.18	8.13	12,14	8.10	10.11	7,9.3	9.10	7,10
2	PP16	15	15.15	20.24	XY	11.13	28.32.2	17,18	8.13	INC	8.10	10.11	793	9.10	7.10
13	PP16 & Identifier	15	16	20.24	~ 1	11.13	28.32.2	17,18	8,13	12.14	8.10	10,11	7.9.3	9.10	7,10
34	ProPlus/Cofiler	15	15	20,24		11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
70	Identifier	15	15	20.24	XY	11.13	28.32.2	17,18	8,13	12.14	8,10	10,11	7.9.3	9.10	7,10
56	ProPlus/Cofiler	15	15	20.24	10,1	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
21	ProPlus/Cofiler	15.15	15.15	20.24	XY	11.13	28.32.2	17,18	8.13	12.14	8.10	10.11	793	9.10	7.10
73	ProPlus/Cofiler	15.15	15.15	20.24	XY	11.13	28.32.2	17,18	8.13	12.14	8.10	10,11	7.9.3	9.10	7.10
29	Identifiler	15	15	20,24	XY	11,13	28.32.2	17,18	8,13	12,14	8,10	10,11	7.9.3	9,10	7,10
64	Al Kits	15.15	15.15	20.24	XY	11.13	28.32.2	17,18	8,13	12.14	8,10	10,11	7.9.3	9.10	7.10
90	ProPlus/Cofiler	15	15	20,24	XY	11,13	28.32.2	17,18	8.13	12,14	8,10	10.11	7,9.3	9.10	7,10
9	ProPlus/Cofler	15	15	20,24	XY	11,13	28.32.2	17,18	8,13	12,14	8,10	10.11	7.9.3	9,10	7,10
4	ProPlus/Cofiler	15	15	20.24	XY	11.13	28.32.2	17,18	8,13	12.14	8,10	10,11	7.9.3	9.10	7.10
33	ProPlus/Cofiler			20,21	14.1	11,10	10,01.0	11,10	0,10	10,114	0,10	10,11	1 10.00	0,10	1,10
12	ProPlus/Cofiler	15	15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	793	9.10	7.10
67	PP16	15	15.16	20,24	XY	11,13	28.32.2	17,18	8.13	12,14	8.10	10.11	7,9.3	9.10	7,10
86	ProPlus/Cofiler	15.15	15.15			11,13	28.32.2	17,18	8,13	12,14	8,10	10.11	7,9.3	9,10	7,10
79	ProPlus/Cofiler	15.15	15,15			11,13	28,32.2	17.18	8.13	12,14	8.10	10.11	7,9.3	9.10	7,10
77	Identifiler	-	-	-		-	-		-	-	-	-	-	-	-
60	PP16	15	15	20.24	XY	11.13	28.32.2	17,18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
61	Identifiler						-						-	-	


Some Mixture Ratios Reported in MIX05 LabID Case1 (F:M) Case2 (M:F) Case3 (M:F) Case4 (F:M) Many labs do 34 1.8--3.6 3.9--6.7 1.6--1.8 6.2--7.6 not routinely 70 report the 55 68%:32% 85%:15% 64%:36% estimated 21 ratio of 73 2:1 6:1 2:1 not determined mixture 29 components 54 2:1 6:1 2.1 6:1 male23-39% not determined male64-71% 90 9 3 or 4:1 4 or 5:1 1.4:1 ~10:1 4 10:1 6:1 1:1 not determined male80-90% male58-71% male60-78% 33 victim86% male85% male40-45% 12 male25% unknown10% 67 1:2.3 6.4:1 2:1 1.6-2:1 1:6.8 2:1 86 6-6.5:1 4-4.5:1 79 ~3:1 to ~2:1 ~6:1 to ~4:1 ~2:1* a lot of victim 77 60 2:1 5:1 2:1 10:1 61

S	ome Repor	ted Stats	for MIX05 Ca	ase #1
			Case1	
LabID	Kits Used	Caucasians	African Americans	Hispanics
77	Identifiler	PE calculated	PE calculated	PE calculated
73	ProPlus/Cofiler	none provided	none provided	none provided
4	ProPlus/Cofiler	none provided	none provided	none provided
12	ProPlus/Cofiler	none provided	none provided	none provided
29	Identifiler	none provided	none provided	none provided
90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10
46	PP16	5.60E+09	3.80E+11	none provided
33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000
9	ProPlus/Cofiler	1.14E+07	1.97E+07	1.54E+08
61	Identifiler	1.50E+06	260,000	2.40E+07
79	ProPlus/Cofiler	930,000	47,900	1,350,000
16	ProPlus/Cofiler	434,600	31,710	399,100

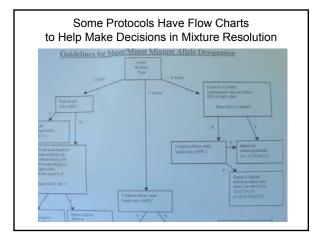
Some Differences in Reporting Statistics

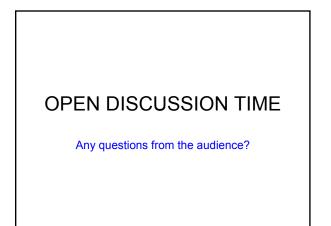

			Case1	
LabID	Kits Used	Caucasians	African Americans	Hispanics
90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10
33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000
9	ProPlus/Cofiler	1.14E+07	1.97E+07	1.54E+08
79	ProPlus/Cofiler	930,000	47,900	1,350,000
16	ProPlus/Cofiler	434,600	31,710	399,100
F	Remember th	<mark>at these l</mark> a	abs are interpr	eting

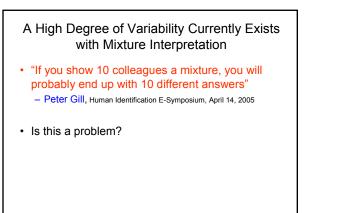
the same MIX05 electropherograms

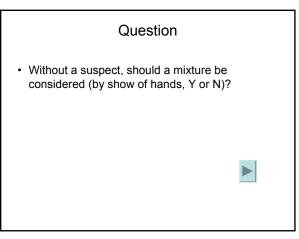
Locus	Allele	Peak height	Com profiles to ob	ssible ponent giving rise sserved xture	Comments
_	12	.643	12	12,13	\$13/13-24 = 45% p=
Da	15	244		12,15	12:15 and Island; but at above soundary
Da	29 21	237 257	e7,25	27,28	Jundang roly 2 setables <u>451-257</u> <u>311(201-37)</u> , <u>134</u> <u>453</u> = (11-1)
	27 30	155			117-207-13/ph bilana 7
	12	287	Let.	12.14	of 12.14. 5 ph balance in 45%
Do	14	331		14.14	g saisa, En myn
	17	463		18.07	H 17 211+67-14 457-14 525 327/31-77 fain 327-111-32
	н	387	в	4,6	J Imagenes, F and

D891176	13	1081	Holder's (Va.85	+264			
D21511		132					314/100 = 0.110
D21911	28	972					
D21811	30	164	mines		tobe .		
D21511	32.2	1010	PHAR'S	253	404461	, 2235	299/2200 : 0.118
D18551	12	162					
D18551	15	120	minera	300	4 hels	3297	34/241 = 0.130
D18551	17	064		000	Par contest	2341	1247 = 0.130
D18S61	18	1033					
D5S818		1060			WARD COMPANY		
D55818	11	140	miller #	372	10 605 793+	2228	
D55818	12	232	mil/e/- 97 a	325			A19/1915 0.130
056818	13	843	\$7 6,793 = 4	47.15			
D13S317		129	Man +	270			
D135317		. 141					
D135317	12	905			fahils	1992	3-70/,452-0.103
D139317	14	817					
075820	18	687			total-	1018	224/54 = 0.101
D75620	9	155	Period by a	253	6871668120		AS4
D75820 D75820	10	000	st. (17) =	24			
0381358			- 44. June - 44. 4	229			and a second
0351358	15 18	1543	24 14.	0.00	20102	1687	3.48/467 = 0.748
			Par trait.				
D165539	8	202		191			
D189539 D169539	10	1420	22. 4(14) #		the		And / 111
D165539	11	1337	****** ****	404	14ud # 1337 #	414.1	C (777-/ (94-)
	18	213					1010 10000
TH01	7	709			fited	1007	LET/ 1597 = 0.1075
TH01 TH01	- 15	87	Million .	168			1 mm




		MIXE	6 Case 1.1	Bowet is	ri this did	in the Day	or Flow 10					
Late	Victim	*	Perpet- rator	*	Civil- clania	2/10	Average Ratis		Thems Field			
CORDINARIE	15	374	-16 17	123	- 84 34	3.55	3.65 1	0.10	6427			
THOM	8	274	1	1	60 81	274	274 1	144				
DENDER	27	1.02	28		11	280	207-3	007	1004			
10001	12	3.19	2H 15 15	1	H	204	327.1	0.00	0.004			
	- 2 -		-	1	. 94	334		1000	1000			
Column .	12		7	1	- 11	174	10015	825	11 2 10			
	iii.	NA	11	NA :	H	NA.	TEA	766				
0136317	11	2.07	12		H	2.07	207.1	NA.	1			
Difeese	9 10	1	10 10	044	*	227	2.27:1	384				
DHOUSE	11	224	10 11	1	:	224	2.58 1	8.96	8.005			
CIFTPO	11	1.08	11	108	-	NA	NA	34				
Partal.	9.2	231	210	(tar	1.1	2 M 231 196 210	210:1	4 13	-			
AWA	17 17	177	15	1	**	1.77	177-1	264	- 23			
DARTIN	14 15	117	12	05	H	234	2.24 1	0.10	0.045			
TPOX	0	NA	0	NA	H	NA	NA.	164	-			
1.maloganin	XX	1.30	X	1		1.30	130:1	NA.				
rGA	12 27	304	20.22	1,23	HH	3(A 2.47 2.35 1.91	244.3	0.40	0.104			


Table 1 SUM	IMARY OF DNA 1	VPING RESULTS: Alleles Dete	otted
Locus	Victim P Reference	Item S Quentioned Nample	No attempt to deduc perpetrator alleles (foreign profile)
D3S1358	15,16	15,16,(17)	,
vWA.	17	15.bt.17	
FGA	19,21	19.20.21.22	
Amelogenin	X	X(Y)	
D8S1179	14,15	12,14,15	
D21S11	27,31.2	27,(28),31.2	
D18S51	12,15	12,15,(16)	
D5S818	11	11	
D13S317	11	11,12	
D7S820	9,10	9,10	
D16S359 TH01	11,12	10,11,12	
TPOX	8	7,8	
CSFIPO	8	8	
cartro	11,12	13,12	


	would be put into CO	
LOCI	CODIS ENTRY * obligate allele	OTHER ALLELE'S IN SUSPECT'S POSSIBLE PROFILE
D3S1358	17	16,17
VWA	15*	15,17
FGA	20,22	20,22
D8S1179	12	12,12
D21S11	28*	28,31.2
D18S51	15*	15,16
D5S818	-	
D13S317	12	12,12
D7S820	-	10
D16S539	10,11*	10,11
THO1	7*	7,8 maybe
TPOX	8	8 maybe
CSF1PO		11,12 maybe

Item: description	D351358	VWA.	FGA	AMEL	D851179	D21511				D75820	D165539		TPOX	
Pro+/CO_S: evid 1	15,16	15 17	19 20	X,X 00	12 14 15	27,31.2 (28)	12,15	11,11	11 12	9 10	10 11	7 8	8,8	11,12
Pro+/CO_P: victim 1 reference		17,17		X,X	14,15	27,31.2	12,15	11,11	11,11	9,10	11,12	8,8	8,8	11,12
Male interpreted from evidence 1	17	15,15 15,17	20,22	X,Y	12,12	28	16	11,11	12,12	Nd	10,11	7,7 7,8	Nd	Nd
	Interpreter	f profile s	ssumes th	at the vic	tim is present tim is present conclusively of	it in the evid	ence mixb	ure of two	people. J	More than	one genoly	pe iniy	be lista	1

Question

• Can mixture reports be standardized (to make them easier for review)?

Question

• Do you look at the evidence data first without considering the suspect's profile?

Question

- Do you have a decision point whereby you consider a mixture too complicated and do not try to solve it?
- · If so, is the case declared inconclusive?

Question

 What elements would be needed in an expert system in order to automatically evaluate mixtures?

Question

• Are composite profiles acceptable – e.g., high injection for minor component and low injection for major component allele identification?

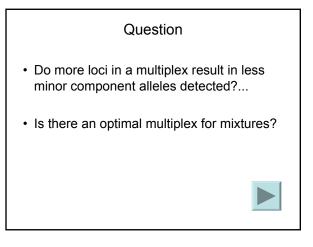
Question

 Should two amplifications be done – e.g., one at 1 ng to type the major component and one at higher concentration to move the minor component out of the low-copy number regime?

Question

• What kind of training materials would be beneficial to help your laboratory more effectively solve mixtures?

Question


• What are the biggest obstacles you face in your lab in terms of mixture interpretation?

Question

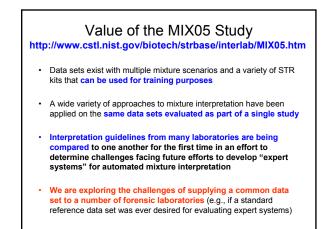
· How do you report mixture statistics in court?

Question

• What percentage of time is spent in a case trying to deduce the mixture components?

Question

 Will improved training information and software tools aid in mixture interpretation (or will lab policies prevent examination of these cases no matter what tools are brought to bear on this problem)?


WRAP-UP AND SUMMARY

Some Final Thoughts...

- It is of the highest importance in the art of detection to be able to recognize out of a number of facts, which are incidental and which vital. Otherwise your energy and attention must be dissipated instead of being concentrated (Sherlock Holmes, *The Reigate Puzzle*).
- "Don't do mixture interpretation unless you have to" (Peter Gill, Forensic Science Service, 1998).

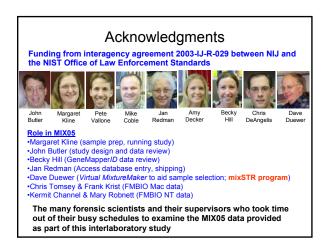
Purpose of MIX05 Study

- Goal is to understand the "lay of the land" regarding mixture analysis across the DNA typing community
- One of the primary benefits we hope to gain from this study is recommendations for a more uniform approach to mixture interpretation and training tools to help educate the community

Additional Thoughts on Mixtures

From J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, p. 166

- Some forensic DNA laboratories may decide not to go through the trouble of fully deciphering the genotype possibilities and assigning them to the major and minor contributors.
- An easier approach is to simply include or exclude a suspect's DNA profile from the crime scene mixture profile. If all of the alleles from a suspect's DNA profile are represented in the crime scene mixture, then the suspect cannot be excluded as contributing to the crime scene stain.
- Likewise, the alleles in a victim's DNA profile could be subtracted out of the mixture profile to simplify the alleles that need to be present in the perpetrator's DNA profile.



- Considers only the presence/absence of alleles (no peak heights used)
- Virtual MixtureMaker (developed to aid MIX05 sample selection)
 Creates mixture combinations through pairwise comparisons of input STR
 profiles
 - . Returns information on the number of loci possessing 0,1,2,3,4,5, or 6 alleles in each 2-person mixture (also reports number of loci in each sample with 0,1,2, or 3 alleles)
 - Useful for selection of samples in mixture or validation studies with various
- degrees of overlapping alleles in combined STR profiles
 Useful in checking for potentially related individuals in a population database
- oserui in checking for potentially related individuals in a population database

Programs can be downloaded from NIST STRBase web site: http://www.cstl.nist.gov/div831/strbase/software.htm

Conclusions

- We plan to develop training information based on lessons learned from the MIX05 study.
- We intend to create other useful software tools like *mixSTR* and *Virtual MixtureMaker* to increase mixture interpretation capabilities of the forensic DNA typing community.

