

Butler, J.M. (2003) Short tandem repeat analysis for human identity testing. Current Protocols in Human Genetics, John Wiley & Sons, Hoboken, NJ, Unit 14.8, in press

New Y-Chromosome NIST SRM Human Y-Chromosome DNA Profiling Standard REFERENCE MATERIALS 2395 •5 male samples + 1 female sample (neg. control) DNA •100 ng of each (50 µL at ~2 ng/µL) Components A - F Store at -20°C \$245 •22 Y STR markers sequenced NIST •9 additional Y STR markers typed •42 Y SNPs typed with Marligen kit E Certified for all loci in commercial Y-STR kits: B Е Y-PLEX 6 SWGDAM recommended loci Y-PLEX 5 DYS19, DYS385 a/b, DYS389I/II, DYS390, DYS391, DYS392, D Y-PLEX 12 PowerPlex Y DYS393, DYS438, DYS439

Plans for Improved miniSTR Markers (going beyond the CODIS 13)

- New markers with smaller allele ranges, low stutter, and better characteristics for small PCR products (will make use of Human Genome Project information)
- Additional STRs to aid in large mass disasters to provide higher discrimination power than is possible with 13 CODIS loci
- Coverage of all chromosomes (22 autosomes + X/Y)
- Dual development of primer sets to enable null allele detection
 - large megaplex system for population data collection
 - miniplex systems to aid casework situations

Will be discussed in more detail at AAFS presentation (Dallas, Feb 2004)

SNP Typing at NIST

 STRBase is the official ISFG repository of forensic SNP information

- http://www.cstl.nist.gov/biotech/strbase/SNP.htm

- We are cataloging SNP information with the goal to standardize assays and speed validation of markers
- We will continue to explore various SNP typing technologies to provide information to the forensic DNA typing community
- We intend to evaluate SNP performance directly against miniSTRs for analysis of degraded DNA

Address 🕘 http://www.cstl.nist.gov/biotedh/strbase/SIP.	htm 🕑 🛃 Go								
Forensic SNP Information									
This site is intended to provide general information or identification applications. Many of these markers co- diatabase. To submit a SNP marker for inclusion on the fact sheet (<u>click here to downlose</u>) to John Butler via .	n single nucleotide polymorphism (INP) matters that may be of interest in human ne floor <u>The INP Contentions</u> (TOC) efforts or us already present in the <u>NOB docMin</u> formatic SNP and, phase provide the exquested information on a standardized SNP mail <u>Table balleotident acc</u> .								
[Markers] [Assays] [SNP Typing Technologies]	Assays								
Last Updated: 12/02/03	35plex Y-SNP ministration and an analy (Searches et al. Poremaic Sci. Sec. 2003;137(1):7444)								
Markers	11plex mtSNP minurequencing array (Values et al. be. J. Legal Med., subverted)								
Autosomal SNPs	SNP Typing Technologies								
TSC 0252540 (submitted by Peter Gill)	A heief summery of the following technologies is included. [00MUR0.000H]								
TCO 1240446 (mb mile 4 hr Dates CO)	Musiequencing/SNaPshot/Primer Extension array								
TOO TOHOHAD (Shoutting of Actes Off)	MALDI-TOF Mass Spectrometry with Primer Extension assay								
TSC 0421768 (submitted by Peter Gill)	TaqMan Real-time PCR array								
	Luminex Bead Array with Allele-specific Hybridization array								
	Pyrosequencing								
	Microaeray technologies								

Chromosor	ne Positi	ons for	Or	chid SN	Ps, FSS SN
	and COE	IS and	oth	ner kit S	TRs
Multiplex	Polymorphism	SNP (STR)	Chr	Position (bp)	Delta Distance (bp)
Forensic 16	C/T	65882	1	15,083,389	
FSS 26plex	A/T	TSC0176551	1	37,237,110	22,153,721
Forensic 13	C/T	68532	1	37,373,821	136,711
Forensic 17D	C/T	234217	1	62,576,736	25,202,915
FSS 26plex	A/T	TSC0739545	1	76,045,653	13,468,917
FSS 26plex	A/T	TSC0298072	1	113,585,934	37,540,281
Forensic 15	C/T	231480	1	127,795,556	14,209,622
Forensic 13	C/T	62059	1	188,625,020	60,829,464
FFFL kit	[AAAT] ₆₋₁₁	F13B	1	194,296,000	5,670,980
Forensic 13	C/T	56608	1	216,351,977	22,055,977
FSS 26plex	A/T	TSC0000254	1	220,649,838	4,297,861
CODIS STR	[GAAT] ₆₋₁₃	TPOX	2	1,436,000	
Forensic 16	C/T	61955	2	8,262,536	6,826,536
FSS 26plex	C/G	TSC0255737	2	26,495,179	18,232,643
Forensic 13	C/T	220875	2	33,858,492	25,595,956
Forensic 14	C/T	58388	2	57,015,551	23,157,059
Forensic 12	C/T	63799	2	57,807,654	792,103
Forensic 14	C/T	219561	2	64,320,501	6,512,847
Forensic 15	C/T	60188	2	77,914,715	13,594,214
Forensic 14	C/T	182622	2	124,697,754	46,783,039
Forensic 15	C/T	85187	2	159,832,074	35,134,320
Forensic 16	C/T	212605	2	213,930,876	54,098,802
Identifiler kit	[TKCC] ₁₅₋₂₈	D2S1338	2	219,082,000	5,151,124
al rule is 50 Mbp sej	paration before	product rule	can	be used to m	ultiply autosomal al

Why is Accurate DNA Quantitation Important in Forensic DNA Testing?

- · Limited amount of DNA available
 - Usually cannot perform multiple tests for quantity
 - Want to preserve DNA for STR testing
- Optimal signal from multiplex STR reactions is only in a tight concentration range (usually 0.5-2 ng)
 - Too much DNA leads to split peaks, off-scale peaks, and bleed through between dye colors
 - Too little DNA leads to loss of loci or alleles due to stochastic effects

Goals for NIST 2004 DNA Quantitation Study

Samples already shipped to 80 laboratories

- Evaluate new real-time PCR assays
- Evaluate behavior of single-source vs. mixed source DNA
- Study shipping conditions for prototype human DNA quant standard (SRM 2372)
 – Teflon tube included in study
- Enough sample provided for multiple technologies and analysts to try

Results due by March 15, 2004

Some Lessons Learned from Real Time-PCR Assays

We are using ABI 7000 (some work also with Roche LightCycler)

- · Results are RELATIVE to standards used
- Single source and mixed source samples with same UV concentrations differ with RT-PCR assays
- Need to keep instrument clean to avoid background fluorescence problems
- Assay reagent costs:
 - Quantifiler: \$2.46/sample (only permits 2 µL/sample)
 - SYBR Green: \$0.80/sample (up to 10 µL/sample)
 - QuantiBlot: \$0.54/sample (5 µL/sample)

Sample	Sex	A ₂₅₀ Result (ng/µL)	QB ^a Result (ng/µL)	Quan	tifiler Hur	nan Kit	Quantifiler Y Kit				
				Result (ng/µL)	% Diff. from A ₂₀₀	% Diff. from QB	Result (ng/µL)	% Diff. from A ₂₆₀	% Diff from QB		
1	М	17.5	20	6.69	61.7	66.6	10.13	41.9	49.4		
2	м	15.4	20	14.3	7.1	28.5	16.78	9.0	16.1		
3	М	13.9	30	15.48	11.4	48.4	14.30	2.9	52.3		
4	М	11.4	The different methods produced similar quantification results.								
5	М	10.3	Table 6-	Table 6-11 Average differences from A ₂₆₀ and Quantiblot kit							
6	М	13.9	Method			Average Difference (%)			32.2		
7	м	11.5	HI I		Quantifi	ler Human Kit	Quant	filer Y Kit	60.2		
7 M		11.5		A ₂₅₀		16.9		15.1			
			0	luantibiot	42.0		35.5		1		

Information from Quantifiler Kit Manual

Tools to Aid Forensic DNA Labs

- Quality assurance testing software (not for typing) to track peak resolution and S/N over time
 – Dave Duewer in collaboration with NCBI
- Interlaboratory DNA Quantitation Study
- Quantitation standard SRM 2372
- Further evaluation of real-time PCR methodologies and measurements for DNA quantitation
- · More miniSTR work for degraded DNA
- Comparison of new SNP markers to miniSTRs on degraded DNA samples
- STRBase updates to standardize information for the community

Presentations at AAFS Feb 2004

- Forensic Human Mitochondrial DNA Analysis Workshop
 February 16, 2004
 - John Butler: "SNPs and Strips"
- Y-STR Analysis on Forensic Casework Workshop
 - February 17, 2004
 - John Butler: "Going Beyond the U.S. Haplotype: A Look at Additional Y-STR and Y-SNP Loci in U.S. Populations"
- Criminalistics Section DNA III
 - February 20, 2004
 - Mike Coble: "Development of New miniSTR Loci for Improved Analysis of Degraded DNA Samples"