Advances in the Biochemistry of DNA Fingerprinting Analysis

Dr. John M. Butler National Institute of Standards and Technology Biotechnology Division

> March 14, 2005 American Chemical Society Meeting

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

J.M. Butler talk at ACS San Diego

Uses for DNA Typing

- Crime solving matching suspect with evidence...
- · Accident victims -after airplane crashes...
- Soldiers in war who is the "unknown" soldier...
- Paternity testing who is the father...
- · Inheritance claims who gets the money...

All uses involve accurate measurement of DNA profiles and PATTERN MATCHING

Forensic DNA Testing

The genome of **each individual is unique** (with the exception of identical twins)

Probe subsets of genetic variation in order to differentiate between individuals (statistical probabilities of a random match are used)

DNA typing must be **performed efficiently and reproducibly** (information must hold up in court)

Current standard DNA tests **DO NOT look at genes** – little/no information about race, predisposal to disease, or phenotypical information (eye color, height, hair color) is obtained

J.M. Butler talk at ACS San Diego

AmpFISTR [®] Identifiler™ (Applied Biosystems) What would	AMI	D19 D3 D8	TH01	A D21	TPOX D13 GA	D7	CSF 6 D18 D2	
be entered		Locus	allele	value	allele	value	frequency, 1 in	1
database for		D3S1358	16.0	0.2315	17.0	0.2118	10.20	1
searching:		VWA	17.0	0.2628	18.0	0.2219	8.57	1
16,17-		FGA	21.0	0.1735	22.0	0.1888	15.26	1
17,18-		D8S1179	12.0	0.1454	14.0	0.2015	17.07	1
21,22-		D21S11	28.0	0.1658	30.0	0.2321	12.99	1
28,30-		D18S51	14.0	0.1735	16.0	0.1071	26.91	1
14,16-		D5S818	12.0	0.3539	13.0	0.1462	9.66	1
12,13-		D13S317	11.0	0.3189	14.0	0.0357	43.92	1
11,14-		D7S820	9.0	0.1478			43.28	1
11,13-		D16S539	11.0	0.2723	13.0	0.1634	11.24	1
6,6-		THO1	6.0	0.2266			18.83	1
8,8-		TPOX	8.0	0.5443			3.35	1
10,10		CSF1PO	10.0	0.2537			15.09	1
The Rand	lom M	atch Proba is	ability for 1 in 1.5	this pro 6 quadri	file in th illion (1	e FBI Ca 0 ¹⁵)	ucasian popula	J tio

J.M. Butler talk at ACS San Diego

Databank vs Casework Data Challenges

- Databank (single source samples)
 - Too much DNA may be added to the PCR reaction resulting in pull-up between dye colors
 - Lots of data to review often produced by contractors
- · Casework (mixtures or low level samples)
 - Often limited DNA material to work with
 - Low copy number samples can result in allele dropout
 - Can produce complicated STR profiles to interpret

Improved computer software for rapid data interpretation is really the biggest need currently

Advantages for STR Markers

- Small product sizes are generally compatible with degraded DNA and PCR enables recovery of information from small amounts of material
- Multiplex amplification with fluorescence detection enables high power of discrimination in a single test
- · Commercially available in an easy to use kit format
- Uniform set of core STR loci provide capability for national and international sharing of criminal DNA profiles

http://www.fbi.gov						
Loundie Scinct Table of Contents Back Issues Search	Forensic Science Communications July 2004 – Volume 6 – Number 3 Standards and Guidelines Report on the Current Activities of the Scientific Working Group on DNA Analysis Methods Y-STR					
Editors About FSC Instructions for Authors	Scientific Working Group on DNA Analysis Methods Y-STR Subcommittee					
Selection of U.S. Core Loci: DY519, DY5385 a/b, DY53890, DY5390, DY5391, DY5392, DY5393, DY5438, DY5439	Introduction Detecting DNA from a male perpetrator is the goal in the forensic investigation of most sexual assaut cases. Y-chromosome-specific STR typing targets the mail DNA and is a useful additional tool in cases that otton involve a mixture of male and temale DNA. Although many technical aspects of Y-STR testing are parallel to autosomal STR tosting, the unilatoral (patrilineal) inheritance of the Y- chromosome alleles creates a haplotype of linked loci, and the statistical evaluation and reporting of the results differ significantly. Therefore, the SWCDAM Y-STR Subcommittee was statististed to deal with all aspects of Y-chromosome-specific testing in forensic casework.					

If you want to know more... • Sorensic DNA Typing: Biology and Technology behind STR Markers • NIST website: http://www.cstl.nist.gov/biotech/strbase • John Butler email: john.butler@nist.gov • StrBase StrBase • Short Tandem Repeat DNA Internet DataBase • The further the submedie is benefit wersarek and application af further • Streme DNA markers in shuma identify werding. The • Streme DNA markers in shuma identif werding. The • Streme DNA

