SNPs and Strips:

Approaches to Rapid Screening of mtDNA types

John Butler

AAFS Workshop: Forensic Human Mitochondrial DNA Analysis February 16, 2004

Presentation Outline

Advantages to Screening Methods

<u>SNPs</u>

- Uses for mtSNPs
- · Methodologies for SNP Typing
- · SNP Assay Design for SNaPshot

<u>Strips</u>

- SSO Probe History and Chemistry
- · Results with Roche LINEAR ARRAYs

Disadvantages to Sequencing

- Expensive
- Primarily due to intensive labor in data analysis
- Error possibilities with more data to review
- Most information is not used

 ctcttctige
 ctcttige
 <td

263G, 315.1C

Most common type: found in ~7% of Caucasians...

Advantages to Screening Methods

- · Rapid results
- · Aids in exclusion of non-matching samples
- Less labor intensive
- · Usually less expensive
- · Permits more labs to get involved in mtDNA

Screening assays are essentially a presumptive test prior to final confirmatory DNA sequencing.

Sequencing is necessary to certify that every position matches between a question and a known sample.

Control Region (16024-576) SNPs

- 1,122 nucleotide positions; typically only 610 bases analyzed (HVI: 16024-16365; HVII: 73-340)
- Challenges with typing closely spaced SNPs
- Probes are disrupted by neighboring polymorphism(s)

Coding Region (577-16023) SNPs

- 15,446 nucleotide positions
- Challenges with typing widely spaced SNPs Multiplex PCR required
- Polymorphisms may have medical significance

Use of mtSNPs

- Rapid screen with informative control region SNPs
 - Minisequencing Tully et al. (1996) Genomics 34: 107-113
 - Budowle et al. (2003) Annu. Rev. Genomics Hum. Genet. 4:119-141
- Quality control for control region sequence data with informative coding region SNPs
 - Coding region SNPs used to classify haplogroup Brandstätter et al. (2003) Int. J. Legal Med. 117: 291-298

 - Brandstätter et al. (2003) Int. J. Legan Inec.
 Allard et al. (2002) J. Forensic Sci. 47(6): 1215-1223
- Aid resolution of most common HV1/HV2 sequence types with coding region SNPs to improve forensic discrimination
 - Full mtGenome sequencing to find optimal SNP markers
 - Parsons and Coble (2001) Croat. Med. J. 42(3): 304-309 Coble et al. (2004) Int. J. Legal Med., in press Vallone et al. (2004) Int. J. Legal Med., in press _

241 com enomes from 18 most common Caucasian HV1/HV2 types

www.cstl.nist.gov/biotech/strbase/NISTpub.htm

HVI 444 bp

• I:R

- IA

AR:A

Linear (I:R)

HVII 416 bp

......

Comparison of gel vs. chip DNA quant values

Invitrogen ladder

Gel Results

Roche ladder

/HVI 444 bp

KHVII 416 bp

120.0

100.0

80.0

			**				Aut (tom Colo	atec or D	l Was evelo	shing ai opment	nd
ł		-	-				Te Sa	ample	e thro	olot – p ugh wa	orocesses ish steps	
					-		24 s ~2 ł 2 or	strips nours · 3 run	per ru per ru s eas	n n ily perfo	ormed per d	ау
-	Step	File	Time	Temp	Solution	16	Cool		25 °C		1	
ŀ	1	Temp		55 °C	Week	17	Disp		25 °C	Wash		
H	2	Disp		55 0	wasii	18	Asp		25 °C		1	
H	3	Fause	15 min	55 0		19	Disp		25 °C	Citrate	1	
H	4	Ann	1011111	55 0		20	Inc	5 min	25 °C		1	
H	6	Disp		55 °C	Wash	21	Asp		25 °C			
Ŀ	7	Asn		55 °C		22	Disp		25 °C	Color Dev	1	
Ŀ	8	Disn		55 °C	SA-HRP	23	Inc	15 min	25 °C		1	
	-				Conjugate	24	Asp		25 °C		1	
	9	Inc	5 min	55 °C		25	Disp		25 °C	DI Water	1	
	10	Asp		55 °C		26	Asp		25 °C		1	
	11	Disp		55 °C	Wash	27	Disp		25 °C	DI Water	1	
	12	Asp		55 °C		28	Inc	5 min	25 °C]	
- [13	Disp		55 °C	Wash	29	Asp		25 °C		1	
	14	Inc	12 min	55 °C		30	Disp		25 °C	DI Water	1	
	15	Asp		55 °C		31	End		25 °C]	

www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Population	N	#types	diversity	Most Common Type	MCT frequency
Caucasian	922	226	0.964	11111111	15.4%
African Am	805	251	0.983	12112021	6.8%
Hispanic	555	170	0.963	12122011	11.7%
	0000	502	0.009	11111111	7 29/
l otal	2282 21 prob	oes, 13 S	NPs	Melton et al. (2001) J. Fore	nsic Sci. 46(1): 46-52
l otal	2282 21 prob	oes, 13 S	NPs	Melton et al. (2001) J. Fore	nsic Sci. 46(1): 46-52
Population	2282 21 prob	soz bes, 13 S #types	diversity	Melton et al. (2001) J. Fore	nsic Sci. 46(1): 46-52 MCT frequency
Total 3 regions, 2 Population Caucasian	2282 21 prob N 286	502 pes, 13 S #types 116	diversity	Melton et al. (2001) J. Fore Most Common Type 1111111111	1.2 % nsic Sci. 46(1): 46-52 MCT frequency 16.4%
Population Caucasian	2282 21 prob N 286 252	302 bes, 13 S #types 116 129	0.998 NPs diversity 0.960 0.977	Melton et al. (2001) J. Fore Most Common Type 1111111111 1141224211	MCT frequency 16.4% 10.7%
Population Caucasian African Am Hispanic	2282 21 prob 286 252 128	302 bes, 13 S #types 116 129 74	0.998 NPs diversity 0.960 0.977 0.954	Melton et al. (2001) J. Fore Most Common Type 1111111111 1141224211 1102120111	1.2% nsic Sci. 46(1): 46-52 MCT frequency 16.4% 10.7% 16.4%

ariaan of Other I.I.C. Denulation Date with CCO Drahas

