FOR THE RECORD

John M. Butler, ¹ Ph.D.; Richard Schoske, ¹ M.A.; Peter M. Vallone, ¹ Ph.D.; Janette W. Redman¹; and Margaret C. Kline, ¹ M.S.

Allele Frequencies for 15 Autosomal STR Loci on U.S. Caucasian, African American, and Hispanic Populations*

POPULATIONS: U.S. Caucasian, African American, and Hispanic

KEYWORDS: DNA profiling, short tandem repeats, DNA typing, STR, CSF1PO, FGA, TH01, TPOX, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, D2S1338, D19S433

Anonymous liquid blood samples with self-identified ethnicities were purchased from Interstate Blood Bank (Memphis, TN) and Millennium Biotech, Inc. (Ft. Lauderdale, FL) and extracted using a modified salt out procedure (1). The extracted DNA was then quantified using UV spectrophotometry at 260 nm and a PicoGreen assay (2). A 150-µL aliquot of the extracted DNA solution was directly quantified in a Cary 100 double-beam spectrophotometer (Varian Analytical Instruments, Walnut Creek, CA). Low volume micro-cuvettes allowed for accurate absorbance measurements (A = 0.2 to 0.6) without prior dilution of the stock extracted DNA. Sample concentrations were adjusted to 1 ng/µL for typing purposes using the PicoGreen assay values. Fifteen autosomal STR markers (the 13 CODIS core loci and D19S433 and D2S1338) were typed along with amelogenin using the Applied Biosystems AmpFℓSTR® IdentifilerTM kit (3). PCR amplification was carried out on a GeneAmp® 9700 (Applied Biosystems) using 1 ng of DNA according to kit protocols (3) with the exception of reduced volume reactions (5 µL instead of 25 µL) and reduced cycles (26 instead of 28). Amplification products were diluted 1:15 in Hi-DiTM formamide and GS500-LIZ internal size standard (Applied Biosystems) and analyzed on the 16-capillary ABI Prism[®] 3100 Genetic Analyzer without prior denaturation of samples. POPTM-6 (Applied Biosystems) rather than POPTM-4 was utilized for higher resolution separations on a 36 cm array. Samples were injected electrokinetically for either 10 s at 3 kV (default value) or 5 s at 2 kV. Allele calls were made in Genotype $^{\otimes}$ 3.7 by comparison with kit allelic ladders using the Kazaam macro (20% filter).

A total of 700 unique STR profiles were evaluated: 302 Caucasian, 258 African American, and 140 Hispanic. There were 660 males and 40 females. The resultant data were evaluated using the DNATYPE program (4). The allele frequencies with observed and expected heterozygosity values from Hardy-Weinberg tests in the three U.S. populations are listed in Tables 1–3. The complete dataset is available at http://www.cstl.nist.gov/biotech/strbase.

References

- Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16(3):1215.
- Singer VL, Jones LJ, Yue ST, Haugland RP. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal Biochem 1997;249-(2):228–38.
- 3. Applied Biosystems (2001) AmpFℓSTR® Identifiler™ PCR Amplification Kit User's Manual, Foster City, CA, P/N 4323291.
- Chakraborty R, Stivers D, Zhong Y, CHG. DNATYPE, (Windows 95/NT ver.). University of Texas, Houston, TX.

Additional information and reprint requests:

Dr. John Butler

National Institute of Standards and Technology

100 Bureau Dr.

Mail Stop 8311

Gaithersburg, MD 20899-8311

Tel: 301-975-4049

fax: 301-975-8505

E-mail: john.butler@nist.gov

¹ Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD.

^{*} National Institute of Justice (NIJ) funded this work in part through an interagency agreement with the NIST Office of Law Enforcement Standards.

TABLE 1—U.S. Caucasian allele frequencies for 15 autosomal STR loci (N = 302).

	411.1.	CSF1PO	FGA	TH01	TPOX	<u>VWA</u>	D3S1358	D5S818	D7\$820	D8S1179	D13S317	D16S539	D18S51	D21S11	D2S1338	D19S433
	Allele 5			0.002	0.002											
	6			0.232	0.002			••								
	7			0.190				0.002	0.018							***
	8	0.005		0.084	0.535	**		0.003	0.151	0.012	0.113	0.018				
	8.1								0.002							***
	9	0.012		0.114	0.119			0.050	0.177	0.003	0.075	0.113				
	9.3			0.368												***
	10	0.217		0.008	0.056			0.051	0.243	0.101	0.051	0.056	0.008			0.002
	10.3											0.004	0.047			0.005
	11	0.301		0.002	0.243		0.002	0.361	0.207	0.083	0.339	0.321	0.017			0.005 0.081
	12 12.2	0.361	**		0.041			0.384	0.166	0.185	0.248	0.326	0.127			0.002
	12.2	0.096			0.002	0.002		0.141	0.035	0.305	0.124	0.146	0.132			0.002
	13.2	0.090			0.002	0.002		0.141	0.055	0.303	0.124	0.140	0.102			0.203
	14	0.008				0.094	0.103	0.007	0.002	0.166	0.048	0.020	0.137			0.369
	14.2	0.000				0.004	0.100	0.007	0.002	0.100			0.002			0.018
	15					0.111	0.262	0.002		0.114	0.002		0.159		0.002	0.152
	15.2															0.035
	16					0.200	0.253			0.031			0.139		0.033	0.050
	16.2															0.015
	17					0.281	0.215						0.126		0.182	0.008
	17.2				***							**				0.002
	18	*-	0.026			0.200	0.152						0.076		0.079	
	18.2															0.002
	19		0.053			0.104	0.012						0.038		0.114	
	19.2															
	20		0.127			0.005	0.002						0.022	**	0.146	**
	21		0.185	***		0.002							0.008		0.041	
	21.2	•••	0.005										0.008		0.038	
	22 22.2		0.219 0.012										0.006		0.036	
	22.2		0.012													
	23		0.134					- 3							0.118	
	23.2		0.003													
	24		0.136			*-									0.123	
	24.2		0.002													
	25		0.071												0.093	
	25.2						**							0.002		***
	26		0.023												0.030	
	27	••	0.003											0.026	0.002	
	28								***	**				0.159		
	29				**									0.195		
	29.2													0.003		
	30													0.278		
	30.2 31													0.028 0.083		
	31.2													0.003		
	32													0.007		
	32.2													0.084		
	33			***										0.002		
	33.1															
	33.2													0.026		
	34															
	34.2													0.005		~~
	35													0.002		
	36															***
	37															
	38	••														***
_	39	0.725	0.887	0.719	0.656	0.841	0.765	0.709	0.818	0.778	0.745	0.735	0.881	0.841	0.871	0.755
	H(ob) H(ex)	0.725 0.724	0.887	0.719	0.637	0.841	0.789	0.709	0.816	0.778	0.745	0.755	0.880	0.835	0.885	0.755
	P P	0.724	0.037	0.758	0.522	0.202	0.789	0.891	0.423	0.278	0.099	0.734	0.846	0.205	0.798	0.952
	'	0.300	0.001	0.000	V. J.L.L	U. ZUZ	0.020	0.001	J. 72.J	0.210	0.000	0.771	0.040	0.200	0.700	

 $H(ob): observed \ heterozygosity; \ H(ex): expected \ heterozygosity; \ P: \ Hardy-Weinberg \ equilibrium, \ exact \ test \ based \ on \ 2000 \ shufflings.$

TABLE 2—U.S. African American allele frequencies for 15 autosomal STR loci (N=258).

	CSF1PO	FGA	<u>TH01</u>	трох	VWA	D3S1358	D5S818	D7S820	D8S1179	D13S317	D16S539	D18S51	D21S11	D2S1338	D19S433
Allele															
5			0.004									*			
6			0.124	0.101				0.002							
7 8	0.053		0.421	0.017			0.040	0.016							
	0.060		0.194	0.372	**		0.048	0.236	0.002	0.033	0.039				
8.1 9	0.037		0.151	0.178			0.039	0.109	0.006	0.033	0.196	0.004			
9.3	0.037		0.105	0.176			0.039	0.109	0.000	0.033	0.190	0.004			
10	0.257		0.103	0.089			0.070	0.331	0.029	0.023	0.116	0.006			0.010
10.3									0.023	0.020	0.110	0.000			0.010
11	0.249	**		0.219			0.233	0.203	0.045	0.306	0.318	0.002			0.062
12	0.298			0.021	0.002		0.353	0.087	0.141	0.424	0.196	0.078			0.114
12.2				**					**				**		0.035
13	0.037			0.002	0.008	0.002	0.238	0.014	0.217	0.145	0.118	0.053			0.246
13.2									**			0.006			0.052
14	0.010				0.078	0.089	0.016		0.300	0.035	0.017	0.072			0.223
14.2															0.079
15	**				0.186	0.302	0.004		0.184			0.161			0.078
15.2						0.002						0.002			0.060
16					0.248	0.335			0.070		**	0.158		0.058	0.004
16.2		0.002													0.027
17					0.242	0.205			0.004	**		0.152		0.099	
17.2	**														0.006
18		0.002			0.155	0.060			0.002			0.123		0.039	
18.2		0.012													0.004
19		0.062			0.062	0.004						0.099		0.148	
19.2		0.004										<u></u>			
20		0.056			0.016						***	0.064		0.103	
21		0.116			0.004			**				0.010		0.144	
21.2												0.002			
22 22.2		0.196 0.004					~~					0.006		0.130	
22.2		0.004													
22.3		0.002										0.002			
23.2		0.002										0.002		0.111	
24		0.122										0.002		0.080	
24.2		0.722										0.002		0.000	
25		0.124		••	~-							_		0.072	
25.2														0.072	
26		0.081											0.002	0.012	
27		0.023											0.078	0.004	
28		0.012									**		0.258		
29		0.004				~-							0.198		
29.2															
30		0.002											0.174		
30.2		0.002											0.010		
31													0.081		
31.2		0.002											0.047		
32													0.008		
32.2												*-	0.058		
33											*		0.006		
33.1													0.002		
33.2													0.035		
34													0.006		
34.2			••	**				444	***				0.000		
35	***												0.023		
36 37													0.010		
38													0.002 0.002		
39													0.002		
H(ob)	0.759	0.884	0.760	0.764	0.802	0.764	0.733	0.764	0.764	0.690	0.783	0.860	0.830	0.903	0.876
H(ex)	0.776	0.876	0.738	0.764	0.813	0.744	0.757	0.775	0.803	0.702	0.795	0.885	0.845	0.893	0.854
P	0.881	0.555	0.648	0.796	0.980	0.588	0.441	0.176	0.165	0.348	0.197	0.571	0.105	0.923	0.336

H(ob): observed heterozygosity; H(ex): expected heterozygosity; P: Hardy-Weinberg equilibrium, exact test based on 2000 shufflings.

 $TABLE\ 3-U.S.\ Hispanic\ allele\ frequencies\ for\ 15\ autosomal\ STR\ loci\ (N=140).$

	Allele	CSF1PO	FGA	<u>TH01</u>	TPOX	<u>VWA</u>	D3S1358	D5S818	D7S820	D8S1179	D13S317	D16S539	D18S51	D21S11	D2S1338	D19S433
	5				**							**				
	6			0.214	0.004											
	7	0.021		0.279	0.007		**	0.043	0.014							
	8			0.096	0.471			0.011	0.121	0.007	0.121	0.025				
	8.1						~~									
	9	0.021		0.150	0.104			0.043	0.111	0.011	0.154	0.139	**			0.004
	9.3			0.246												
	10	0.232		0.014	0.032	***		0.061	0.293	0.100	0.100	0.118	0.004			
	10.3	0.004						**	0.004						**	
	11	0.293			0.275	*		0.350	0.257	0.057	0.236	0.261	0.011			0.014
	12	0.357			0.107			0.350	0.164	0.143	0.221	0.254	0.118			0.064
	12.2															0.014
	13	0.061					0.007	0.125	0.036	0.268	0.118	0.186	0.111			0.250
	13.2															0.032
	14	0.007				0.086	0.079	0.014		0.250	0.046	0.018	0.139			0.375
	14.2 15	0.004				0.168	0.293	0.004		0.400	0.004				***	0.043
	15.2							0.004		0.129	0.004		0.189			0.121
	16					0.264	0.286			0.025			0.126		0.026	0.036 0.021
	16.2					0.204	0.200			0.025			0.136		0.036	
	17					0.218	0.204			0.007			0.129		0.196	0.025
	17.2					0.210	0.204			0.007			0.129		0.190	
	18		0.018			0.171	0.125			0.004			0.068		0.100	
	18.2		0.010			0.171	0.12.0			0.004			0.000		0.100	
	19		0.064			0.079	0.007						0.039		0.179	
	19.2												0.000	***	0.173	
	20		0.089		***	0.011							0.032		0.136	
	21		0.168			0.004							0.011		0.036	
	21.2															
	22		0.150										0.014		0.061	**
	22.2														**	
	22.3							***								
	23		0.136		**										0.096	
	23.2		0.004						***	**						
	24		0.150		**										0.071	
	24.2													0.004		
	25		0.121						~~						0.075	
	25.2															
	26		0.054												0.014	
	27		0.043					**						0.036		
	28													0.096		***
	29									***				0.200		
	29.2 30		0.004									**		0.004		
	30.2		0.004											0.261 0.039		
	31													0.039		
	31.2													0.111		
	32											**		0.007		
	32.2													0.129		
	33													0.004		
	33.1					**			-2					0.004		
	33.2													0.021		
	34									**				0.004		
	34.2															
	35															
	36															
	37	**														
	38						***									
_	39			**												
	H(ob)	0.743	0.886	0.764	0.679	0.850	0.757	0.729	0.864	0.786	0.843	0.793	0.914	0.871	0.843	0.764
	H(ex)	0.731	0.880	0.787	0.681	0.814	0.772	0.734	0.796	0.818	0.834	0.802	0.879	0.847	0.878	0.775
_	P	0.991	0.734	0.891	0.021	0.939	0.943	0.360	0.284	0.282	0.910	0.752	0.194	0.990	0.373	0.350

H(ob): observed heterozygosity; H(ex): expected heterozygosity; P: Hardy-Weinberg equilbrium, exact test based on 2000 shufflings.