

U.S. National Institute of Standards and Technology Victoria Police Forensic Services Department September 9, 2013 Macleod, Victoria, Australia

Rapid DNA Prototype Testing

- Received first R-DNA prototypes in Sept 2012
- R-DNA platforms have been evolving quickly over the last 12 months
- Many developmental changes and upgrades within the past year
 - Software, hardware, data processing, etc

Purpose of Interlaboratory Testing

- As of July 2013 R-DNA success levels were high enough to carry out an interlaboratory assessment of the R-DNA prototypes
- Data was collected and analyzed in August 2013
- Results will only be shown from the NIST/DHS instrument
 - Results will be presented at the Biometrics Consortium Conference by Peter Vallone (September 18th, Tampa, FL)

Interlaboratory Testing Plan

- Anonymous buccal collection of 50 samples
 - (5 replicates of 10 unique individuals)
 - Swabs were collected 15 months prior to testing
- Schematic of runs (10 chips)

		Chip								
Lane	1	2	3	4	5	6	7	8	9	10
1	А	F	J	E	А	С	F	н	D	-
2	В	G	1	D	В	E	F	J	E	J
3	С	н	н	С	В	D	G	J	А	F
4	D	1	G	В	A	D	G	1	В	G
5	E	J	F	A	С	E	н	1	С	н
Ladder										

Defining Success

• A complete and correct CODIS core 13 STR profile (as called by the expert system software)

- If any of the 13 loci allele calls were incorrect or absent this was deemed a lane failure
- Comparing correct genotypes (lab generated) to the types exported to cmf
- Note: we are not including chips that failed due to hardware issues in success calculations

When can developmental validation begin?

- When a final version of the software, chemistry, and hardware (the box) has been locked down
- Right now it would be similar to testing an STR kit that is still being optimized
 - Primer concentrations, PCR primer sequences, mastermix, annealing temperatures, etc
- Or CE instrument that is undergoing optimization

 Capillary array material changes, formulation of
 spectral matrices, collection software, etc

Topics

- Rapid DNA (Pete Vallone)
- Y STRs (Becky Hill)
- Next Gen Sequencing (Kevin Kiesler)

Outline

- Rapidly Mutating (RM) Y-STRs Overview
- Population Genetic Parameters – current Y-STR kits
- Utility for common Y-STR haplotypes
- Utility for close relatives
- Conclusions

What has happened in the past decade...

- Selection of core Y-STR loci (SWGDAM Jan 2003)
- "Full" Y-chromosome sequence became available in June 2003; over 700 Y-STR loci identified (only ~20 in 2000)
- Commercial Y-STR kits released

 Y-PLEX.6,5,12 (2001-03), PowerPlex Y (9/03), Yfiler (12/04), PPY23 (6/12)
 Yfiler Plus (coming soon)
- Many population studies performed and online databases generated with thousands of Y-STR haplotypes
- Forensic casework demonstrations showing value of Y-STR testing along with court acceptance
- · Some renewed interest in Y-STRs to aid familial searching

	STR Marker Layouts for Y-STR Kits	
1 2003	100 bp 200 bp 300 bp 400 bp	1 1 1
	DYS391 DYS389I DYS439 DYS389II	
Plex	DYS438 DYS437 DYS19 DYS392	12plex
Power	DYS393 DYS390 DYS385 a/b	(4-092)
	DY5456 DY53891 DY5390 DY538911	
2004	DYS458 DYS19 DYS385 a/b	47-1
rfilei	DYS393 DYS391 DYS439 DYS635 DYS392	(5-dye)
_	Y-GATA-H4 DYS437 DYS438 DYS448	
2012	DY5576 DY53891 DY5448 DY538911 DY519	
Y23	DYS391 DYS481 DYS549 DYS533 DYS438 DYS437	23plex
rPlex	DYS570 DYS635 DYS390 DYS439 DYS392 DYS643	(5-dye)
Powe	DYS393 DYS458 DYS385 ə/b DYS456 Y-GATA-H4	

N = 948 males	Yfiler	New Loci*	Yfiler Plus*	
# haplotypes	930	945	946	
discrimination capacity	0.9810	0.9842	0.9979	9 of the 10 new loci
# times haplotype	Yfiler	New Loci*	Yfiler Plus*	alone perform slight
observed	(17 loci)	(9 loci)	(26 loci)	better than Yfiler
1	916	918	944	
2	11	15	2	
3	2			
4	1			
5				*Note: Analysis does not
6				include information from
7				DYS460 in this study
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

Disadvantages of the Y-Chromosome

- Loci are not independent of one another and therefore rare random match probabilities cannot be generated with the product rule; must use haplotypes (combination of alleles observed at all tested loci)
- Paternal lineages possess the same Y-STR haplotype (barring mutation) and thus fathers, sons, brothers, uncles, and paternal cousins cannot be distinguished from one another
- Not as informative as autosomal STR results
 More like addition (10 + 10 + 10 = 30) than multiplication (10 x 10 x 10 = 1,000)

Trying to <u>separate</u> close male relatives

	20	Di	vore	ity o	ftha N	Aarko	rc
00	ie		vers	Sity U			:13
Marker		GD	DC		Marker	GD	DC
DYS576	0.	766	0.03	5	DYS526a/b	0.923	0.138
DYF399S1	0.	993	0.58	7	DYS626	0.794	0.043
DYF387S1	0.	870	0.09	98	DYS627	0.848	0.043
DYS570	0.	743	0.03	5	DYS518	0.791	0.039
RM-01 (all)	0.9	9998	0.97	64	RM-02 (all)	0.9985	0.8661
		Ma	rker	GD	DC		
DYS385a/b		DYF40)3S1a/b	0.923	0.791	All 13	RM Y-STRs
GD = 0.929		DYF	404S1	0.902	0.110	resolve	d 948 male
		DY	5612	0.832	0.043		
		DY	5449	0.796	0.043		
	DYS		5647	0.798	0.039		
		DY:	5547				

	PPY-23	mtDNA	Kinshin Index	RM Mutatio
Y27	match	n/a	Eather-Son	0
Y28	match	n/a	254,325,532	
¥16	match	match	Full Sib	0
Y17	match	match	155,463	Ŭ
ZT79994	match	match	Full Sib	1
ZT79995	match	match	56,327	
GT37828	match	C1 (Native)	Cousin	4
C87H	match	n/a	0.228	
PT84348	match	L1b (African)	Cousin	3
ZT80369	match	C1 (Native)	0	

Interpretational Issues

- We will need to move away from simply "excluding" based upon a set number of discordant markers.
- A Likelihood Ratio can provide weight to the evidence based upon competing propositions.
- This will require information on the *haplotype frequency* and *mutation rate data*.

Relating two deep-rooted pedigrees from Central Germany by high-resolution Y-STR haplotyping Manfred Kayser⁴⁴, Mark Vermeulen⁴², Hank Knoblauch⁴⁷, Herber Schuster⁴⁷, Michael Krawczak²⁷, Lutz Rower⁴⁷ Forensic Science International: Genetics 1 (2007) 125–128.

NIST Y-STR Data					
 All PPY23 Y-STR haplotypes have been submitted to the Y-HRD and U.S. Y-STR databases 					
 Much of this data presented has been recently published in Profiles in DNA and FSI: Genetics 					
Contents links available at features Researchest Forensic Science International: Genetics INTYLER parent homospage www.stereter.com/seaterhoig	rsi				
Shor commissions Haplotype data for 23 Y-chromosome markers in four U.S. population groups Modula D. Coller, "Carlyin R. Hill, Join M. Buler Modula Coller, "Carlyin R. Hill, Join M. Buler Manatane et Anter and Modula Merchanism Galactic Merchanismos	Profiles in DNR Variability of New STR Loci and Kits in US				

Summary

- Rapidly Mutating Y-STRs are highly diverse markers that can discriminate common haplotypes and close relatives.
- These markers may create interpretational issues for paternity/missing persons cases, but LRs can be useful for evaluating these situations.
- An international consortium is gathering frequency and mutation rate data.
- We plan on testing Yfiler Plus with our population samples as soon as the Material Transfer Agreement (MTA) gets signed by both parties (NIST and Life Tech)

Topics

- Rapid DNA (Pete Vallone)
- Y STRs (Becky Hill)
- Next Gen Sequencing (Kevin Kiesler)

Use of NGS for forensic applications

Highly-parallel/high-throughput next-generation sequencing technologies provide the ability to directly sequence forensically relevant targets Issues: sample input amounts, back compatibility, new workflows, cost, throughput, etc

- Mitochondrial whole genome analysis

 Potential for improved sensitivity, mixture detection, multiplex sequencing of full mitochondrial genomes
 Detection of minor SNP variants – heteroplasmy
- Going in depth into STR loci
 - STRs are useful for legacy (databases)
 - SNPs within STRs identify 'sub-alleles'
- Forensically relevant SNPs: newer human identity applications: biogeographical ancestry, externally visible traits, complex kinship, degraded samples, low template

Initial Goals

- To characterize NIST forensic SRMs with NGS
 - Further characterizes the materials with a new technique
 - Supports adoption of NGS in forensic community
 - SRM 2391c: PCR Based DNA Profiling Standard
 Not all STR loci have full sequence information
 - SRMs 2392 and 2392-1: Mitochondrial DNA Sequencing
 Confirm Sanger data with a high coverage sequencing technology
 Understand bias between NGS platforms: chemistry and
 - bioinformatics
- Is there a need for a new material?
 - Forensic validation

Characterization of the existing SRMs

Current Status

- 2391c PCR Based DNA profiling standard
 - 68 STR markers (51 autosomal + 17 Y chromosome)
 - STR repeat lengths (alleles) were certified using multiple (unique) PCR primer sets
 - Sanger sequencing was only performed for loci without multiple PCR primer sets (only 10% of markers)
- 2392 & 2392-I Mitochondrial DNA sequencing standard

 Entire mtGenome (≈16,569 bp) was certified by Sanger sequencing
 - Multiple F/R strand coverage across the mtGenome

- Use of multiple platforms to obtain a consensus sequence for the SRMs
 - Identify and reduce the false positives and negatives
 - Identify and account for bias in a specific chemistry and/or informatics pipeline

Data Processing Pipeline:

Signal Processing, Alignment, and Variant Calling

	Ion Torrent PGM	Illumina MiSeq	Illumina HiSeq	SOLiD 5500	
Signal Processing Output: FASTQ	Torrent Server	MiSeq Reporter	HiSeq Control	LifeScope	
Read Mapping Output: BAM	Torrent Server	Novoalign	BWA	LifeScope	
Variant Calling Output: VCF	Torrent Server	GATK	GATK	GATK	
Abbreviations: FASTQ – Unaligned reads in text format with quality scores BAM – Binary Alignment Map (Aligned reads) VCF – Variant Call File BWA – Burrows Wheeler Aligner GATK – Genome Analysis Tool Kit					

Sequence Coverage Summary

Experiment	Average Read Depth (AQ20*)	Experiment Design
EdgeBio PGM	280 x	Seven mtGenomes + spike-in controls**
NIST PGM Run 1	6,500 x	Three mtGenomes
NIST PGM Run 2	9,000 x	Three mtGenomes
Illumina MiSeq	49,000 x	Seven mtGenomes
Illumina HiSeq	41,000 x	Seven mtGenomes + spike-in controls**
NIST SOLID	29,000 x	Seven mtGenomes + spike-in controls**

* AQ20 = reads with alignment quality score of 20 or above = less than 1 error per 100 bases

**Spike-in control was NIST SRM 2374: DNA Sequence Library for External RNA Controls

F	alse sing	e Posi platfo	tives a	and Fa	lse Ne ormatic	egative s pipeli	es ne
		PGM 1	PGM 2	PGM 3	HiSeq	MiSeq	5500
9947A	FP	1	5	3	21	9	11
	FN	3	4	3	3	3	3
CHR	FP	2	6	10	21	9	10
	FN	3	5	4	3	3	4
HL-60	FP	1	8	8	20	9	8
	FN	1	2	1	1	1	1
Avg Coverage		280	6,500	9,000	49,000	41,000	29,000
Calls mad On averag	e to th ge 0.04	e rCRS % error rate	2				

Fa Us	ilse	Posit platfor	t ives a m spec	ind Fa	Ise Ne	e gativ s pipeli	es ne
		PGM 1	PGM 2	PGM 3	HiSeq	MiSeq	5500
9947A	FP	1	5	3	21	9	11
	FN	3	4	3	3	3	3
CHR	FP	2	6	10	21	9	10
	FN	3	5	4	3	3	4
HL-60	FP	1	8	8	20	9	8
	FN	1	2	1	1	1	1
Avg Coverage		280	6,500	9,000	49,000	41,000	29,000
False negatives were concentrated in C stretch regions of the genome The FN sites 13,759 and 5,228 were due to low coverage 9947A (FN) = 309.1, 309.2, 315.1, 13,759 CHR (FN) = 309.1, 315.1, 16193.1, 16183, 16189 HL-60 (FN) = 315.1, 5,228							

Heteroplasmy detected by NGS at Site 1,393 and 7,861

•	Agreement across platforms (high confidence)
	1,393 ≈ 18.0% (± 2.2%) minor component "A"
	7,861 ≈ 14.2% (± 2.9%) minor component "T"

Experiment	1,393 "G" (rCRS)	1,393 "A" (Var.)		7,861 "T" (rCRS)	7,861 "C" (Var.)	
PGM at EdgeBio	77.3 %	22.7 %	97 x	14.1 %	85.9 %	71 x
PGM NIST Run 1	83.9 %	16.1 %	1385 x	20.0 %	80.0 %	191 x
PGM NIST Run 2	83.3 %	16.7 %	1571 x	15.0 %	85.0 %	571 x
NIST SOLID	82.9 %	17.1 %	22,719 x	12.5 %	87.5 %	17,499 x
Illumina MiSeq	82.1 %	17.8 %	6,517 x	11.6 %	88.4 %	3,715 x
Illumina HiSeq	82.3 %	17.7 %	48,071 x	11.8 %	88.2 %	42,101 x
Average	82.0 %	18.0 %		14.2 %	85.8 %	

Summary of mtDNA Work

- · The consensus data from the four NGS platforms for the mitochondrial SRMs agree with Sanger sequencing data
 - G/A heteroplasmy at 1,393 confirmed
 - T/C heteroplasmy at 7,861 confirmed C insertions and deletions are issues (assemblers/variant callers)
 - The majority of false positives are of low abundance and not reproducible across platforms
- Continuing work
 - Experiments for setting a variant calling threshold
 - Evaluate a three amplicon approach for mitochondrial DNA enrichment
 - Sequence the mitoSRMs on the PacificBiosciences platform (Collaboration with Children's National Medical Center) - Benefit from a standardized (forensic) informatics pipeline (CLC bio software, NextGENe)
 - Evaluate improved variant callers from Life Technologies and Illumina

NIST SRM 2391c

PCR Based Profiling Standard

· Certified Reference Material for STR typing

• E - Single-source female cells on 903 paper • F – Single-source male cells on FTA paper

- Five components
 - A Single-source female
 - B Single-source male
 - C Single-source male • D – Mixed-source (Components A and C)

· Components A, B, and C have been sequenced at NIST on the PGM

Results for SRM 2391c Component A

- Alleles sequenced for all CODIS loci
 - All alleles confirmed and agree with Sanger sequence
 D2 and D19 dropped out at the PCR stage

ocus	Certified Value	NGS Value	Repeat Structure - Allele 1	Repeat Structure - Allele 2
D2S1338	18,23	TBD	To Be Determined	To Be Determined
D3S1358	15,16	15, 16	TCTA[TCTG]_[TCTA]	TCTA[TCTG],[TCTA]12
D55818	11,12	11,12	[AGAT]11	[AGAT]12
D75820	11,11	11,11	[GATA] ₁₁	[GATA]11
D6S1179	13,14	13,14	[TCTA]15	[TCTA]2TCTG[TCTA]11
D13S317	8,8	8,8	[TATC] ₈	[TATC] ₈
D16S539	10,11	10,11	[GATA] 30	[GATA]11
D18551	12,15	12,15	[AGAA]12	[AGAA] ₁₅
D1951443	13,14	TBD	To Be Determined	To Be Determined
D21S11	28,32.2	28,32.2	[TCTA]_[TCTG]_[TCTA]_TA[TCTA]_TCA[TCTA]_TCCATA][TCTA]_10	[TCTA] ₁₀ [TCTG] ₆ [[TCTA] ₃ TA[TCTA] ₁ TCA[TCTA] ₂ TCCATA] [TCTA] ₁₂ TA TCT
CSF1PO	10,10	10,10	[AGA] ₂₀	[AGAT]10
FGA	21,23	21,23	[TTTC],TTTT TTCT[CTTT];;;CTCC[TTCC];	[TTTC],TTTT TTCT[CTTT];;CTCC[TTCC];
Penta D	9,13	9,13	[AAAGA],	[AAAGA] ₁₁
Penta E	5,10	5,10	[AAAGA] ₃	[AAAGA] ₁₀
TH01	8,9.3	8,9.3	[AATG] _R	[AATG],ATG[AATG],
TPOX	8,8	8,8	[AATG] _g	[AATG] _g
VWA	18,19	18,19	TCTA[TCTG]a[TCTA]23	TCTA[TCTG]_[TCTA]14
AMEL	ХX	XX	No Polymorphisms Observed	No Polymorphisms Observed

Results for SRM 2391c Component B

Novel variant

- Alleles sequenced for all CODIS loci
 - D18 allele 16 needs to be confirmed

	2391c Component B						
Locus Certified Value NGS Value		NGS Value	Repeat Structure - Allele 1	Repeat Structure - Allele 2			
D2S1338	17,17	TBD	To Be Determined	To Be Determined			
D3S1358	15,19	15, 19	TCTA[TCTG],[TCTA]11	TCTA[TCTG]_[TCTA]_15			
D55818	12,13	12,13	[AGAT]12	[AGAT]11			
D75820	10,10	10,10	[GATA] 20	[GATA]10			
D6S1179	10,13	10,13	[TCTA] ₃₀	[TCTA]11			
D13S317	9,12	9,12	[TATC],	[TATC]12			
D16S539	10,13	10,13	[GATA] 20	[GATA]11			
D18S51	13,16	13,TBD	[AGAA] III	To Be Determined			
D19S1443	16,16.2	TBD	To Be Determined	To Be Determined			
D21S11	32,32.2	32, 32.2	TCTA) (TCTA) (TCTA) TA(TCTA) TCA(TCTA) TCCATA)(TCTA)	[TCTA]_[TCTG]_[[TCTA]_TA[TCTA]_TCA[TCTA]_TCCATA][TCTA]_2 TA TCTA			
CSF1PO	10,11	10,11	[AGAT] ₁₀	[AGAT]11			
FGA	20,23	20,23	[TTTC]_TTTT TTCT[CTTT]_1CTCC[TTCC]_	[TTTC],TTTT TTCT[CTTT],,;CTCC[TTCC];			
Penta D	8,12	8,12	[AAAGA],	[AAAGA]			
Penta E	7,15	7,15	[AAAGA],	[AAAGA]			
TH01	6,9.3	6,9.3	[AATG] _e	[AATG]_ATG[AATG]_			
TPOX	8,11	8,11	[AATG] _R	[AATG]11			
VWA	17,18	17,18	TCTA[TCTG] ₄ [TCTA] ₁₂	TCTA[TCTG]_[TCTA]_11			
AMEL	XΥ	XΥ	No Polymorphisms Observed	No Polymorphisms Observed			

<section-header><section-header><section-header><section-header><section-header><section-header><section-header> e.alleles sequenced for all CODIS loci e.blacks sequence sequences e.blacks sequences e.blacks sequences e.blacks sequences e.blacks sequences <t

Summary of STR Work

- SRM 2391c Components A, B, and C sequenced
 - Used both 200 bp and 400 bp chemistry
 - Ion Torrent PGM 314 (v2) and 316 (v2) chips
- Analysis parameters are being optimized
 - Some loci were more difficult to analyze (e.g. CSP1PO)
 - Changed flanking region sequence to 35 bp either side
 Improved specificity to alleles, reduced # of reads mapping
 - Dropouts at D18 (16 allele) for SRM Components B and C
- Illumina MiSeq being installed at NIST next week

Life Technologies

Coming Soon for PGM

- HID SNP Panel v2.2
 - Autosomal loci chosen for high heterozygosity and low Fst
 - Genotype match probability 10⁻³¹ to 10⁻³⁵
 - 179 loci amplified in a single multiplex PCR
 - Short amplicons ≈ 150 bp

Life Technologies

Future Plans

- Ancestry informative and phenotypic SNP panel
- For generating investigative leads, subject exclusion
- 245 SNPs
 - 202 Ancestral SNPs
 - 45 Hair and eye color SNPs

