

August 3, 2004 Rockville, MD

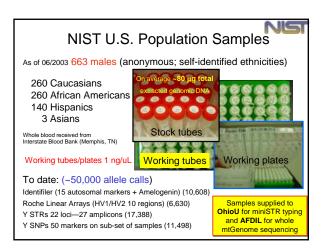
NS

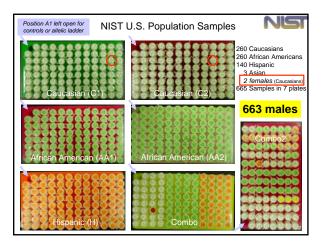
Current Areas of NIST Research Effort

earch, Development, and Evaluation Agency of the U.S. Department of Justice

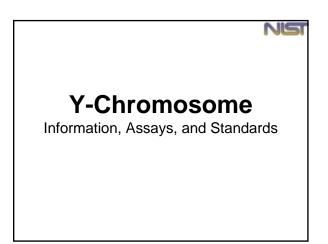
• Y-Chromosome Information, Assays, and Standards

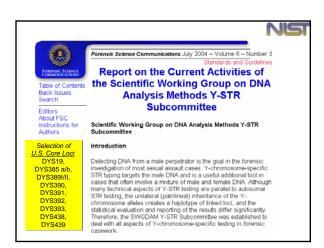
National Institute of Justice

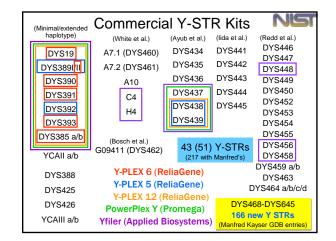

1

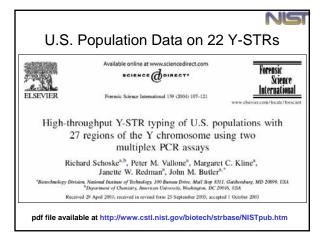

- Resources for "Challenging Samples" (SNPs and miniSTRs)
- DNA Quantitation (Interlab study, Real-time PCR comparisons)
- Tools to Aid State and Local Laboratories (e.g., STRBase)
- Aid to or Completion of Other NIJ Projects (e.g., LSBs)

NISI

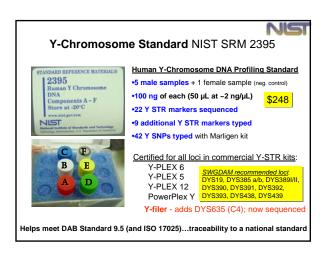

Instrumentation at NIST

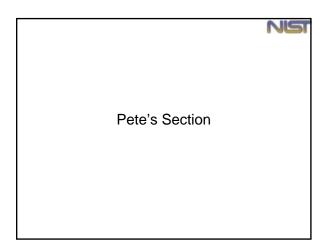

- ABI 3100
- ABI 310
- ABI 7000
- Agilent BioAnalyzer 2100
- FMBIO III+
- GeneAmp 9700s
- STR kits used: Identifiler, PowerPlex 16, PowerPlex Y, Y-PLEX 12 (6/5), SGM Plus, Profiler Plus, COfiler, Profiler

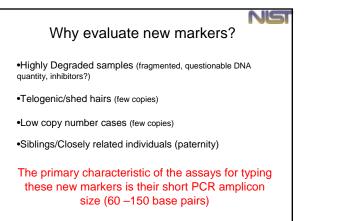


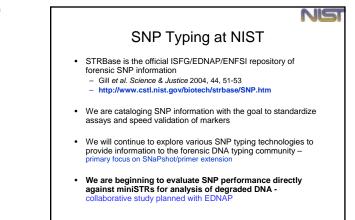


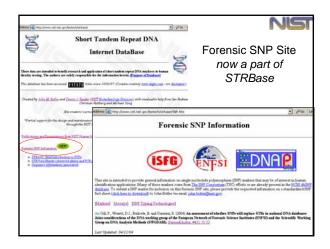
 Material State Material State 	(biotechylstyt	oase/NESTpop.tem		_	_		200	in .		-
NA Data										
Autosomal STR	• 15 Lo	ci using the Iden	affler kit (App	and Biosyster	mi)					
· dale frequencies		the second								
· Ram Data as Extel	füt.	ALFERNAR 251.7	ST.200.40403	SEPTI						
miniSTR data - 1	2 of COD	IS STR loci at	retoced nor l	PCR products						
					~					
 data collected by comparison to Ide 						10.00				
	and the second	an parameter as a	our out of Porter		ay and south	au2.0000		_		
New STR and m	TPini	data - Com	contr emp		dates DOT				~	
		data + o non-	CODIS STR.	IOCI III FEGUCE	q une LCE?	products				
1	11.1	Address of the state of the state		berry and the second se	- I WEITHOUGH MALE			_		-
· preventation by 3		http://www.cstl.ne	t-guv/biotech/str	tww.NESTprpde	a/#52003Eve	er, estare				1
1	A1					er eker	6	н		
• presentation by 3 • allele prepieruies			c	D	E	F	G FGA	H	THE	J
· preventation by 3						F EGA 258 AA	G EGA 140 His	H 1991 302 Cau	1 <u>TH01</u> 258 AA	
• preventation by) • disk frequencies Y-STRs • 22 Loca	A1 A	- B CSF1P0	C CSF1P0	D CSF 1P0	EGA	F EGA	EGA	TH901		
presentation by 1 dele frequencies Y-STRs - 22 Loca data androis pub	A1 A	- B CSF1P0	C CSF1P0	D CSF 1P0	EGA	F EGA	EGA	11901 302 Gau	258 AA	140 H
prevention by N side requestors Y-STRS - 22 Loca data undersis part ófrem average	A1 A	- B CSF1P0	C CSE1P0 258 A4	D CSF1P0 140 His	EGA	F EGA	EGA	1991 302 Cau 0.00166 0.23179	258 AA 0.00388 0.12403	140 H
president by 1 data requestor Y-STRs - 22 Local data analysis put African American U.S. Conclusion	A1 A 2 Allele 3 4 6	- 0 CSF1P0 302 Cau 5 6 7	C CSE1PQ 258.A4 0.05253	D CSF 1P0	EGA	F EGA	EGA	1001 302 Gau 0.00166 0.23179 0.19040	258 AA 0.00388 0.12403 0.42054	140 H 0.214 0.278
prevention by N side requestors Y-STRS - 22 Loca data undersis part ófrem average	A1 A 2 Allele 3 4 6 6		C CSE1P0 258 A4	D CSF1P0 140 His	EGA	F EGA	EGA	1991 302 Cau 0.00166 0.23179	258 AA 0.00388 0.12403	140 H 0.214 0.278
presentation by 3 delete frequencies Y-STRs 22 Local data analysis poli Afrean America U.Z. Casa testion D U.Z. Casa testion D	A1 A 2 Allele 3 4 5 6 7	B CSF1P0 302 Cav 5 6 7 8 0.00437	C CSE1PO 258 A4 0.06253 0.06031	D CSE 1PQ 140 His 0.02143	EGA	F EGA	EGA	19901 302 Gau 0 00166 0 23179 0 19040 0 08444	258 AA 0 00388 0 12403 0 42054 0 19380	140 H 0.214 0.278 0.096
 preventations by X allow foregoencies Y-STRS 22 Loca data unalysis put African American U.S. Express (OF american) U.S. Express (OF american) 	A1 A 2 Allele 3 4 5 5 7 8	B CSF1PO 302 Cav 5 6 7 8 0.00497 1 9 0.01159	C CSE1PQ 258.A4 0.05253	D CSF1P0 140 His	EGA	F EGA	EGA	1991 302 Gau 0.00166 0.23179 0.19040 0.08444 0.11424	258 AA 0.00388 0.12403 0.42054 0.19300 0.15116	140 H 0.214 0.278 0.096 0.150
prendation by 3 deb trepsenses V-STRs 22 Loca data scapping put data surprise put data surprise put data surprise put US Regular Method Sone (conclusion) Applied Distyre	A1 A 2 Abele 3 4 6 6 7 8 8 9 9	B CSF1P0 302 Cav 5 6 7 8 0.00497 1 1 9 0.01159	C CSE 1PO 258 AA 0.06253 0.06031 0.03696	D <u>CSF IPO</u> 140 Ha 0.02143 0.02143	EGA	F EGA	EGA	1991 302 Cae 0.00166 0.23179 0.19040 0.08444 0.11424 0.36755	258 AA 0.00388 0.12403 0.42054 0.19380 0.15116 0.10465	140 H 0.214; 0.278 0.096 0.150 0.245
 preventations by X allow foregoencies Y-STRS 22 Loca data unalysis put African American U.S. Express (OF american) U.S. Express (OF american) 	A1 A 2 Allele 3 4 6 6 7 8 9 9 9 9	B CSF1P0 302 Cav 5 6 7 8 0.00497 1 1 9 0.01159 1.3 1 0.021609	C CSE1PO 258 A4 0.06253 0.06031	D CSE 1PO 140 His 0.02143 0.02143 0.23214	EGA	F EGA	EGA	1991 302 Gau 0.00166 0.23179 0.19040 0.08444 0.11424	258 AA 0.00388 0.12403 0.42054 0.19300 0.15116	140 H 0.214; 0.278 0.096 0.150 0.245
preventation by 1 adds interpretation y-STRs - 22 Loca data surgers put African America UEL Resultant 0 UEL Resultant 0 some contendant Applied Distryve Y-SNPS - 50 Loca	A1 A 2 Altele 3 4 5 6 7 8 9 5 10 11 10	B CSF1P0 302 Cav 5 6 7 9 0.00497 1 9 0.01159 3 1 0 0.21609 3	C CSE1PO 258 AA 0.06253 0.06031 0.03696 0.25681	D CSE 1PO 140 Ho 0.02143 0.02143 0.23214 0.00357	EGA	F EGA	EGA	11901 302 Gau 0 00166 0 23179 0 19040 0 08444 0 38756 0 00028	258 AA 0.00388 0.12403 0.42054 0.19380 0.15116 0.10465	140 H 0.214; 0.278 0.096 0.150 0.245
principal of the product of the	A1 A 2 Allele 3 4 6 6 7 8 9 9 9 9 10 11 10 12		C CSE1PO 258 A4 0.06253 0.06031 0.03696 0.25681 0.25681	D <u>CSF1P0</u> 140 He 0.02143 0.02143 0.02143 0.02143 0.00057 0.29086	EGA	F EGA	EGA	1991 302 Cae 0.00166 0.23179 0.19040 0.08444 0.11424 0.36755	258 AA 0.00388 0.12403 0.42054 0.19380 0.15116 0.10465	140 H 0.214; 0.278 0.096 0.150 0.245
preventation by 1 adds interpretation defa interpretation vertical data services put ulif, Rose team 0 ulif, Rose team 0 vertical data services	A1 A 2 A5ele 3 4 6 6 7 8 9 9 5 10 11 10 12 13	B B CSFIP0 302 Cau 5 6 7 0.00497 11 0.00159 12 0.30032	C CSE1PO 258 AA 0.06253 0.06031 0.03696 0.25681	D CSE 1PO 140 Ho 0.02143 0.02143 0.23214 0.00357	EGA	F EGA	EGA	11901 302 Gau 0 00166 0 23179 0 19040 0 08444 0 38756 0 00028	258 AA 0.00388 0.12403 0.42054 0.19380 0.15116 0.10465	140 H 0.214; 0.278 0.096 0.150 0.245
prevention by 1 adds requires adds requires Y-STRs 22 Loci data are prior pair y-SNPs - 50 Loci adds frequences U.S. Concerned 0 Are prior Arease	A1 A 2 A3ele 3 4 5 6 6 7 10 9 5 10 11 10 12 13 14 12 13 14 12	B CSFIPO 302 Cev 5 6 7 8 0.00437 11 0.21609 33 11 0.201609 3 11 0.30132 12 0.36093 .2	C CSE 1PQ 258 AA 0.06253 0.06031 0.03696 0.25681 0.24903 0.29767	D <u>CSF 1P0</u> 140 He 0.02143 0.02143 0.23214 0.00357 0.23036 0.35714	EGA	F EGA	EGA	11901 302 Gau 0 00166 0 23179 0 19040 0 08444 0 38756 0 00028	258 AA 0.00388 0.12403 0.42054 0.19380 0.15116 0.10465	140 H 0.214; 0.278 0.096 0.150 0.245
prevention by 1 adds requires adds requires Y-STRs 22 Loci data are prior pair y-SNPs - 50 Loci adds frequences U.S. Concerned 0 Are prior Arease	A1 A 2 Allele 3 4 6 6 6 7 8 8 9 9 9 10 11 10 12 13 14 12 15	B 302 Cau 5 6 7 9 0.0169 33 10 11 0.20609 2 3 0.00152 13 0.00603	C CSE1PO 258 A4 0.06253 0.06031 0.03696 0.25681 0.25681	D <u>CSF1P0</u> 140 He 0.02143 0.02143 0.02143 0.02143 0.00057 0.29086	EGA	F EGA	EGA	11901 302 Gau 0 00166 0 23179 0 19040 0 08444 0 38756 0 00028	258 AA 0.00388 0.12403 0.42054 0.19380 0.15116 0.10465	140 H 0.214; 0.278 0.096 0.150 0.245
prevention by 1 adds requires adds requires Y-STRs 22 Loci data are prior pair y-SNPs - 50 Loci adds frequences U.S. Concerned 0 Are prior Arease	A1 A 2 Abele 3 4 6 6 6 7 8 9 9 5 10 11 10 12 13 14 12 15 16 13 15 16 13 16 16 10 15 16 16 16 16 16 16 16 16 16 16	B 302 Cau 5 6 7 9 0.0169 33 10 11 0.20609 2 3 0.00152 13 0.00603	C CSE 1PQ 258 AA 0.06253 0.06031 0.03696 0.25681 0.24903 0.29767	D <u>CSF 1P0</u> 140 He 0.02143 0.02143 0.23214 0.00357 0.23036 0.35714	EGA	F EGA	EGA	11901 302 Gau 0 00166 0 23179 0 19040 0 08444 0 38756 0 00028	258 AA 0.00388 0.12403 0.42054 0.19380 0.15116 0.10465	J 140 H 0.214 0.278 0.096 0.096 0.096 0.1500 0.246 0.014

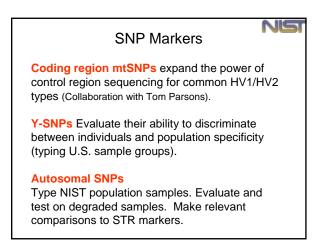


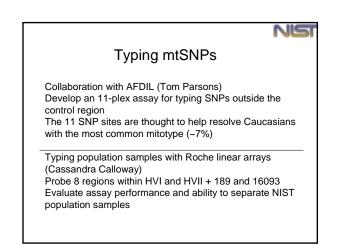


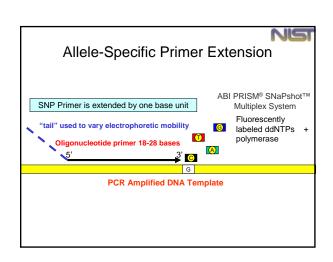


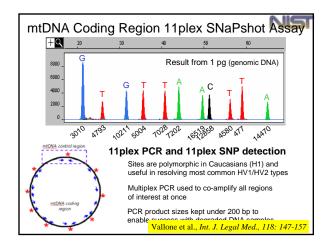


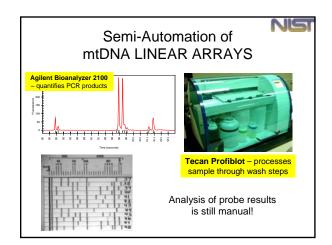

US haplotype (Reliagene kits)	Y-STR	Pooled Population <u>STR diversity</u> (N=647) Rank		African American <u>STR diversity</u> (N=260) Rank		Caucasian STR diversity (N=244) Rank		Hispanic STR diversity (N=143) Rank	
	DYS464 a/b/c/d	0.956	1	0.954	1	0.934	1	0.937	1
Yfiler	DYS385 a/b	0.912	2	0.942	2	0.838	2	0.901	2
(ABI)	YCAII a/b	0.790	3	0.797	3	0.701	5	0.772	4
\rightarrow	DYS458	0.765	4	0.758	5	0.743	3	0.793	3
	DYS390	0.764	5	0.664	10	0.701	5	0.665	13
	DYS447	0.747	6	0.767	4	0.683	7	0.748	5
	DYS38911	0.736	7	0.722	6	0.675	8	0.734	6
	DYS448	0.721	8	0.722	6	0.595	11	0.704	8
\rightarrow	DYS456	0.700	9	0.671	9	0.731	4	0.695	9
PowerPlex Y	DYS438	0.691	10	0.560	15	0.594	12	0.690	10
(Promega)	DYS19	0.676	11	0.722	6	0.498	19	0.672	12
(coga)	DYS439	0.656	12	0.636	11	0.639	9	0.717	7
$\rightarrow \rightarrow$	DYS437	0.637	13	0.499	17	0.583	13	0.624	14
→	H4	0.611	14	0.612	12	0.562	14	0.609	15
+C4>	DYS392	0.609	15	0.434	20	0.596	10	0.673	11
	DYS460	0.570	16	0.568	14	0.555	15	0.556	18
	DYS3891	0.549	17	0.531	16	0.538	17	0.596	16
	DYS391	0.534	18	0.447	19	0.552	16	0.577	17
	DYS426	0.519	19	0.375	21	0.482	20	0.522	19
	DYS450	0.489	20	0.487	18	0.177	22	0.414	21
	DYS393	0.485	21	0.586	13	0.363	21	0.448	20
	DYS388	0.365	22	0.246	22	0.501	18	0.312	22

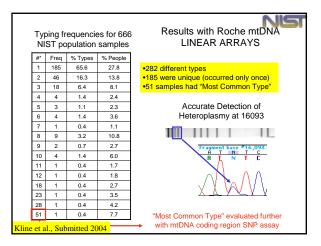


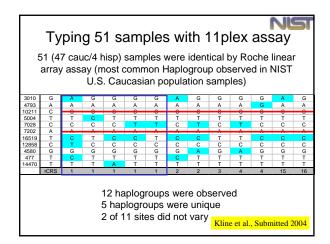


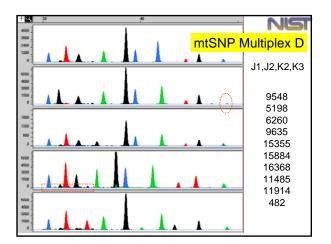


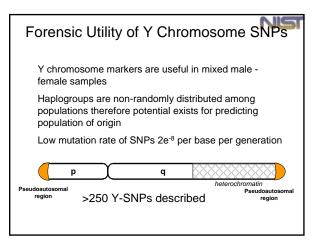




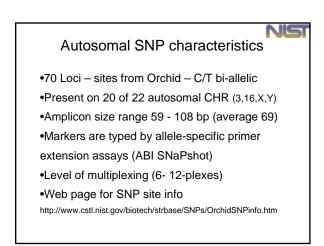


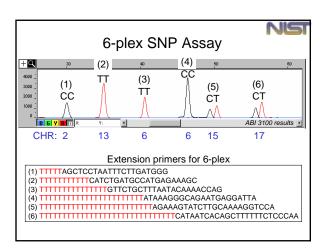


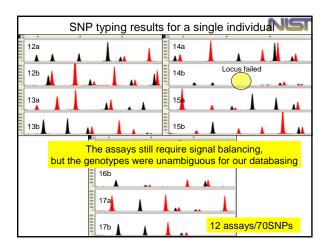


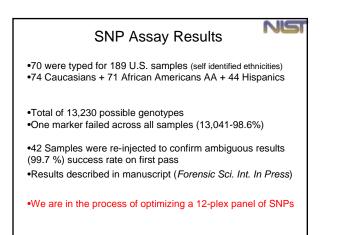


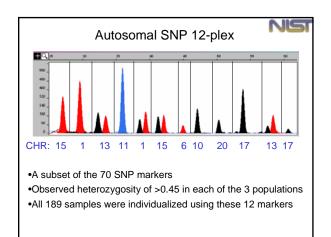
http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

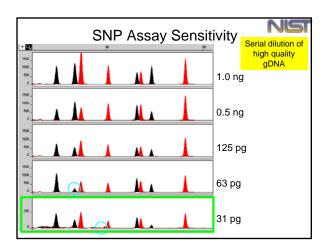


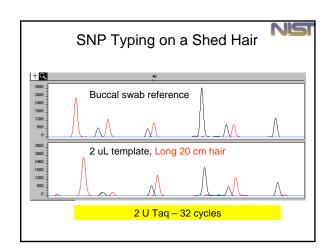


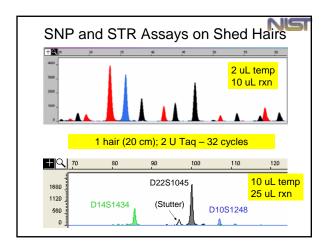


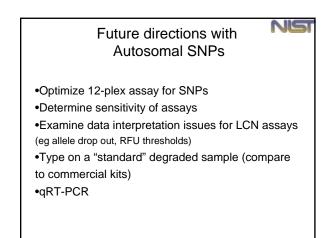


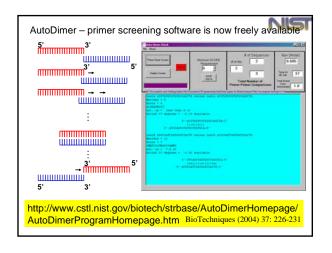

NS
J Forensic Sci, July 2004, Vol. 49, No. Poper ID F52030 Available online at www.usan.
Peter M. Vallone, ¹ Ph.D. and John M. Butler, ¹ Ph.D.
Y-SNP Typing of U.S. African American and Caucasian Samples Using Allele-Specific Hybridization and Primer Extension*
Summary • Different technologies yield the same Y-SNP type • Full concordance was observed between hybridization and primer extension technologies on 18 different Y-SNPs (>3,800 allele calls)
 Y-SNPs will have limited value for individualizing a sample 18 different types observed in 229 individuals
 Current Y-SNPs appear to have limited value for ethnic differentiation in U.S. populations One exception: M2 only in African Americans; not in Caucasians

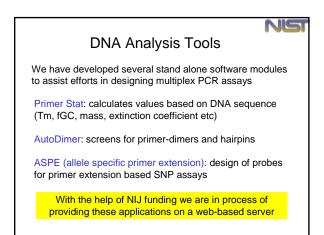


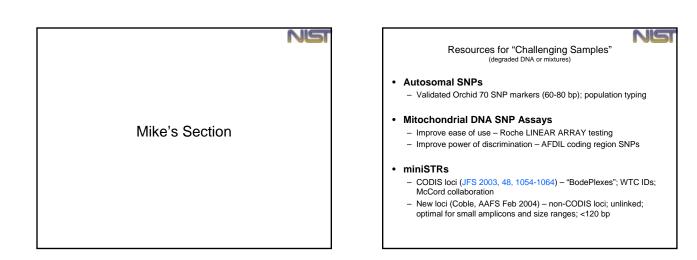


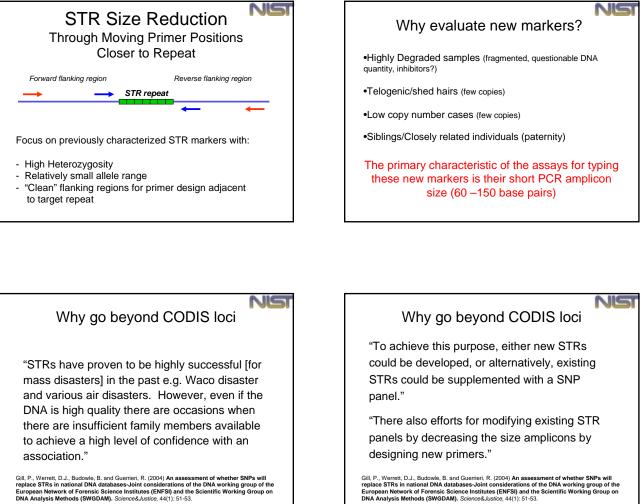






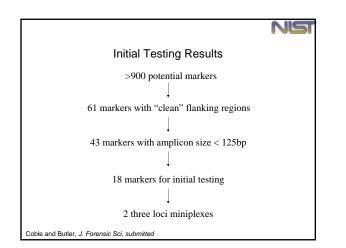


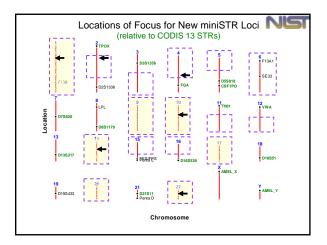


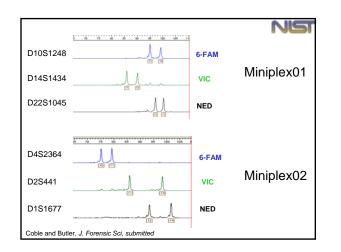


Gill, P., Werrett, D.J., Budowle, B. and Guerrieri, R. (2004) An assessment of whether SNPs will replace STRs in national DNA databases-Joint considerations of the DNA working group of the European Network of Forensis Csience nstitutes (ENFS) and the Scientific Working Group on DNA Analysis Methods (SWGDAM). *Science&Justice*, 44(1): 51-53.

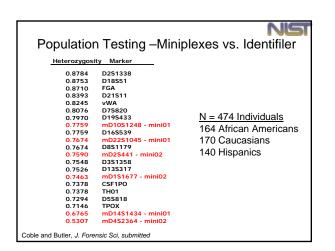
Why go beyond CODIS loci

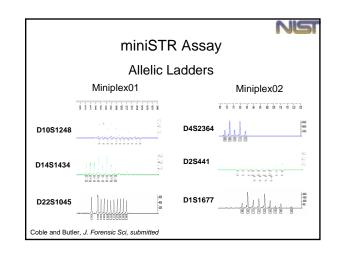

- · Desirable to have markers unlinked from CODIS loci (different chromosomes) for some applications
- Small size ranges to aid amplification from degraded DNA samples

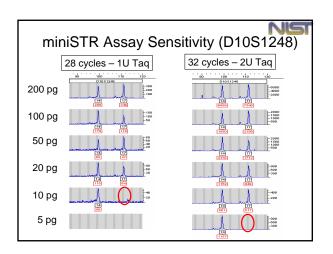

NIS

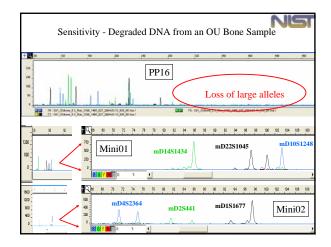

Characterization of New miniSTR Loci

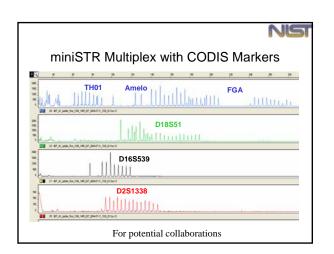
- · Candidate STR marker selection
- · Chromosomal locations and marker characteristics
- PCR primer design
- Initial testing results
- Population testing ٠
- Allelic ladder construction
- Miniplex assay performance

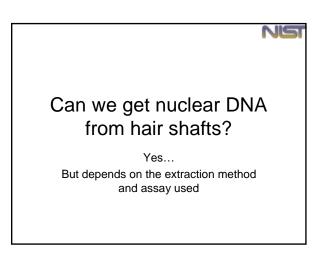

NIST Research Summary for AFDIL

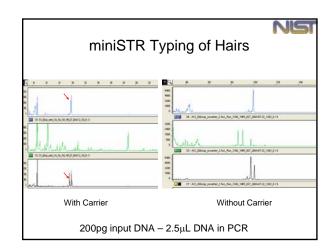


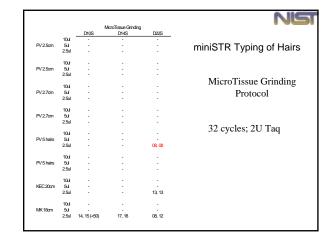


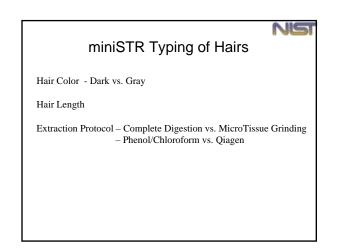


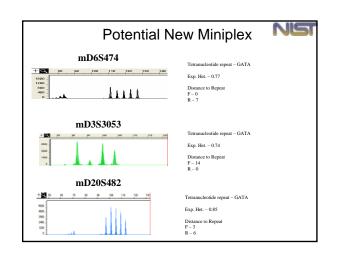

STR	Sequence	Allele	Size Range	Observed
Locus	Motif	Range	(bp)	Heterozygosity
D1S1677	(GGAA) _n	9-18	81-117	0.75
D2S441	(TCTA) _n	9-17	78-110	0.76
D4S2364	(GAAT)(GGAT)(GAAT) _n	8-12	67-83	0.53
D10S1248	(GGAA) _n	10-20	83-123	0.78
D14S1434	(GATA) _n (GACA) _n	13-20	70-98	0.68
D22S1045	(TAA) _n	5-16	76-109	0.77

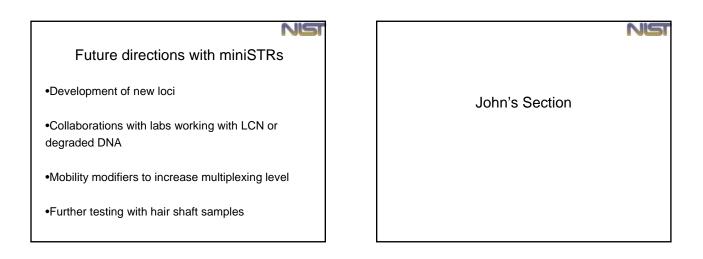






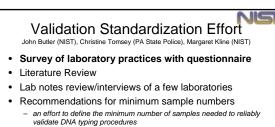


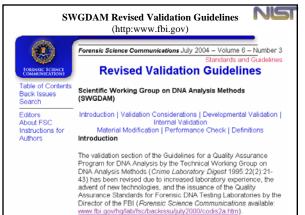

			Complete Digestion		
		D10S	D14S	D22S	0 00
	10ul			08, 13	
PV 2.5cm	5ul	-		08, 08	
	2.5ul	-			
					miniSTR Typing of Hairs
	10ul	-	-	-	minority ping of mane
PV 2.5cm	5ul	-	-	-	
	2.5ul	-	-	-	
	10ul	-		-	Complete Digestion
PV 2.7cm	5ul	-			Complete Digestion
	2.5ul	-			Protocol
					PIOLOCOI
	10ul	-		08, 13 (<50)	
PV 2.7cm	5ul	-	-	13, 13	
	2.5ul	-	-	-	
	10ul	16, 16	17, 18	08, 13	
PV 5 hairs	5ul	16, 16	17, 18	08, 08	32 cycles; 2U Taq
	2.5ul	15, 15	-	08, 13	52 cycles, 20 Tuq
	10ul			08, 13	
PV 5 hairs	5ul	-	-	08, 13	
	2.5ul	-	-	13, 13	
	10ul	16, 17	17	13	
KEC 20cm	5ul	16, 17	17	13	
	2.5ul	16, 17	17	13	"Longer" Hairs – greater
	10ul	14, 15	17, 18	08, 12	
MK 18cm	5ul	14, 15	17, 18	08, 12	success
	2.5ul	14, 15	17, 18	08, 12	
Genotypes		D10S	D14S	D22S	L
PV		15, 16	17, 18	08.13	
KEC		16, 17	17, 17	13, 13	
MK		14, 15	17, 18	08, 12	

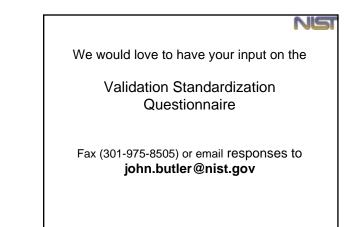


	_	32 cycles 5 ul	32 cycles 2.5 ul	36 cycles 2.5 ul (5U Taq)	
	JB01 (1.5cm)	18, 18	18, 18	-	
	JB02 (1.3cm)	-	-	13, 14	miniCTD Tuning of Unit
	JB03 (1.5cm)	-		08, 08	miniSTR Typing of Hair
(Phenol)	JB04 (1.5cm)	17, 17			
	JB07 (1.3cm)	-	-		
	JB09 (1.0cm)	-	16, 16		
				22, 22; 13, 13	
	JB10 (3.3cm)	-	16, 16; 17, 17; 13, 13		26 hairs (0.8 cm – 3.3 cm)
	JB01 (1.1cm)	14.14			
	JB02 (1.2cm)	14, 16		13.13	
Dark Hair	JB03 (1.8cm)		13.13	21.21	
	JB04 (1.4cm)		-		
(4,4,6,6,1,1)	JB05 (1.2cm)			16, 16; 13,13	
	JB06 (1.5cm)	-			
	JB01 (1.8cm)	14, 16 16, 16	14, 15; 17,17 16,16: 18,18, 13,13	14, 16; 18,18; 13,13 16, 16; 13,13	← 1.8 cm hair
0	JB02 (2.0cm) JB03 (1.1cm)	16, 16	10,10; 10,10, 13,13	13,13	
	JB03 (1.1cm) JB04 (1.4cm)	10, 10	11,11	16, 16; 18,18	
(Phenoi)	JB04 (1.4cm) JB05 (1.7cm)	15, 15	16, 16	18,18; 13,13	
	JB06 (1.7cm) JB06 (1.0cm)	10, 10	16, 16	16,16; 13,13	
	JB06 (1.0cm)	-	10,10	-	
	JB11 (1.0cm)	13, 13	-	16, 16: 18, 18	
	JB14 (1.5cm)	18, 18, 13, 13	16, 16	10, 10, 10, 10	
	JB15 (1.7cm)	-	10, 10	13.13	
Gray Hair	JB16 (1.1cm)	-	13, 13	13, 13	
		18, 18		13, 13	
	JB17 (0.8cm)				
	JB17 (0.8cm)				
	JB17 (0.8cm) JB19 (1.4cm)	16, 16	-	16, 16 14, 14: 18, 18	

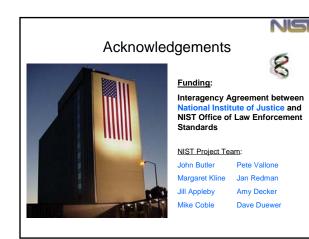
	miniST	R Typir	ng of Ha	iirs
-	"Correct"	"Partial"	"Incorrect"	"Did Not Type"
Dark Phenol (7)	4/63	2/63	5/63	52/63
%	0.06	0.03	0.08	0.83
Dark Qiagen (6)	4/54	1/54	2/54	47/54
%	0.07	0.02	0.04	0.87
Gray Phenol (6)	12/54	6/54	4/54	32/54
%	0.22	0.11	0.07	0.59
Gray Qiagen (7)	9/63	4/63	2/63	48/63
%	0.14	0.06	0.03	0.76

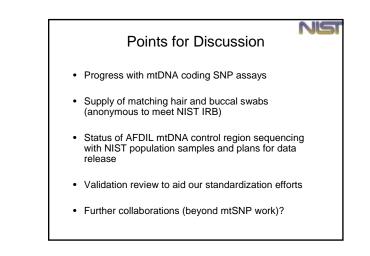



NIS


Tools to Aid State and Local Laboratories

- STRBase standard information source
- Variant Alleles cataloging variants and tri-allelic patterns
- NIST U.S. Population Samples and Database
- ٠ Quality Assurance Tool - resolution monitor to track analytical performance over time
- Validation Standardization Information
- Training Materials
 - Downloadable PowerPoint files from STRBase
 - Current Protocols in Human Genetics, Electrophoresis review article on STR analysis with ABI 310 and ABI 3100 Forensic DNA Typing, 2nd Edition (Dec 2004/Jan 2005)




- through a survey of standard practices currently used by practitioners in forensic DNA laboratories
- results will be summarized at the Promega meeting in October 2004 and made available on the NIST STRBase web site.
- · There is a lot of interest from the companies to have guidance in developmental validation and from practitioners for internal validation

Eectrophoresis 2004, 28, 1397-1412 1397	Forensic DNA Typing, 2 nd Edition: John Butler Biology, Technology, and Genetics of STR Markers (not NIST)
Service Service John M, Batler* En Bade* ServiceInter* For ensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis Statisteriburg, MD, USA * For ensic DNA typing by capillary electrophoresis (CG) the ABI Prism 310 and 3100 genetic analyzers for STR analysis DNA typing with short tandem repeat (STR) markers is now widely used for a variety of applications including humanidentification. Capillary electrophoresis (CE) instruments, such as the ABI Prism 310 and ABI 3100 Genetic Analyzers, are the mathod of charlers for mary liborative performing STR analysis. The review discusses issues surround- ing sample preparation, rejection, separation, detection, and interpretation of STR results using CE systems. Requirements for accurate bying of STR allekes are consid- ered in the context of what future analysis platforms will need to increase sample throughpot and asse of two.	Chapter 1 Overview X History of DNA Typing New Material: Chapter 3 Sample Collection, Extraction, Quantitation 10 additional chapters Chapter 4 PCR Amplification Statistics (basics with examples) Chapter 5 Common STRs and Commercial Kis Statistics (basics with examples) Chapter 6 Single Nucleotide Polymorphisms Serology tests Chapter 10 Mitochondrial DNA analysis ABI 3100 Chapter 12 DNA bateacy methods Expert systems Chapter 12 DNA bateacy methods Mass and mitorbal polymorphisms Chapter 12 DNA bateacion (Methods Expert systems Chapter 13 STR Genotyping Issues ABI 3100 Chapter 14 STR Genotyping Issues Mass disasters including WTC Chapter 15 STR Genotyping Issues >500 new reference citations
Covers ABI 310 and ABI 3100 hardware, software, chemistry, and STR kits .pdf file can be downloaded from http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm NEAFS Workshop being conducted September 29-30, 2004 covering STRs and CE in detail (handouts will be made available on the STRBase website)	Chapter 19 Basic Genetic Principles and Statistics 50 new figures and 45 new tables Chapter 20 STR Database Analyses Manuscript is -950 pages Chapter 21 Profile Frequency Estimates Manuscript is -950 pages Chapter 23 Statistical Analysis of Mixtures and Degraded DNA Chapter 23 Chapter 23 Statistical Analysis of Mixtures and Degraded DNA Chapter 23 Appond: R Headmit Call Internity Testing Manuscript is -950 pages Append: R Reported STR Allele Frequencies Append: R Append: R U.S. Population Data-STR Allele Frequencies Academic Press plans to have Append: N DAB Recommendations on Statistics Academic Press plans to have Append: N DAB Cases available by January 2005

