### **New Technology Integration: Benefits of Interlaboratory Testing in DNA Forensics**

The 238th ACS National Meeting Washington, DC, August 18, 2009

Peter M. Vallone<sup>1</sup>, Margaret C. Kline<sup>1</sup> and David L. Duewer<sup>2</sup> M. Valione', Margaret C. Kine' and David L. Du <sup>1</sup>Biochemical Science Division <sup>2</sup>Analytical Chemistry Division National Institute of Standards and Technology Gaithersburg, MD

# NIST – Gaithersburg, MD

**Chemical Science and Technology Laboratory** 

**Biochemical Science Division (~80)** 

**Applied Genetics Group (9)** 

Human Identity Project (7)

#### **National Institute of Justice** the U.S. Department of Justic

### **Current Areas of NIST Effort with Forensic DNA**

- Standards
  - Standard Reference Materials
  - Standard Information Resources (STRBase website) Interlaboratory Studies

# Technology

- Research programs in SNPs, miniSTRs, Y-STRs, mtDNA, qPCR Assay and software development

#### Training Materials - Review articles and workshops on STRs, CE, validation

- PowerPoint and pdf files available for download

http://www.cstl.nist.gov/biotech/strbase

### Human Identity (DNA) Testing Applications

- · Forensic cases: matching suspect with evidence
- · Paternity testing: identifying father
- Missing persons investigations ٠
- · Military DNA "dog tag"
- · Convicted felon DNA databases
- · Mass disasters: putting pieces back together
- · Historical investigations

٠

Genetic genealogy

>3 million tests performed per year

## Purpose of an Interlaboratory Study

 Interlaboratory studies (ILS) are a way for multiple laboratories to compare results and demonstrate that the methods or instrument platforms used in one's own laboratory are reproducible in another laboratory



### P.M. Vallone – NIST ACS Talk

### Human ID Project Team Experience

- Coordinated 6 interlaboratory studies over the last 15 years
- Participated in 17 national and/or international interlaboratory studies

| NIST Initiate                                                       | ed Int | erlaboratory Studies                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluation of CSF1PO,<br>TPOX, and TH01                             | 34     | Kline MC, Duewer DL, Newall P, Redman JW, Reeder<br>DJ, Richard M. (1997) Interlaboratory evaluation of STR<br>triplex CTT. J. Forensic Sci. 42: 897-906                                                                                                                                                                                                                                                                                          |
| Mixed Stain Studies #1<br>and #2 (Apr–Nov 1997<br>and Jan–May 1999) | 45     | Duewer DL, Kline MC, Redman JW, Newall PJ, Reeder<br>DJ, (2001) NIST Mixed Stain Studies #1 and #2:<br>interlaboratory comparison of DNA quantification practice<br>and short tandem repeat multiplex performance with<br>multiple-source samples. J. Forensis C5: 46: 1199-1210                                                                                                                                                                  |
| Mixed Stain Study #3<br>(Oct 2000-May 2001)                         | 74     | Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M.<br>(2003) NIST mixed stain study 3: DNA quantitation<br>accuracy and its influence on short tandem repeat<br>multiplex signal intensity. <i>Anal. Chem.</i> , 75: 2453-2469.<br>Duewer, D.L., Kline, M.C., Redman, J.W., Butler, J.M.<br>(2004) NIST Mixed Stain Study 3: signal intensity<br>balance in commercial short tandem repeat multiplexes,<br><i>Anal. Chem.</i> , 76: 6928-6934. |
| DNA Quantitation Study<br>(Jan-Mar 2004)                            | 80     | Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M.<br>(2005) Results from the NIST 2004 DNA Quantitation<br>Study, <i>J. Forensic Sci.</i> 50(3):571-578                                                                                                                                                                                                                                                                                       |
| Mixture Interpretation<br>Study (Jan - Aug 2005)                    | 69     | Poster at Promega meeting (2005); available on STRBase                                                                                                                                                                                                                                                                                                                                                                                            |



# **DNA Quantitation**

- · Interlaboratory study to help assess the accuracy of DNA quantitation in forensic **DNA** laboratories
- Quantitation of human genomic DNA

# **DNA** Quantitation

- Four primary purposes
  - 1. to examine concentration effects and to probe performance at the lower DNA concentration levels that are frequently seen in forensic casework
  - 2. to examine consistency with various methodologies across multiple laboratories
  - 3. to examine single versus multiple source samples
  - 4. to study DNA stability over time and through shipping in two types of storage tubes

# Material used in an ILS

- · Well characterized for the intended analysis - Homogeneous so all participants are analyzing the same material
  - Stable to shipping methods used, unless this is part of the study
- Made in sufficient quantities
  - So additional material can be resent or reanalyzed
- · In a similar matrix to what the participants are used to analyzing
- · Relevant concentration range and volumes

M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2005) Results from the NIST 2004 DNA C

# Prior to sending out samples

- Experimental design
  - Exact experiments to run
  - How analysis should be performed
  - A worksheet to store data, parameters, notes, etc was provided
  - Set a final date for receiving data

# NIST Quantitation Study 2004 (QS04)

### Consisted of:

8 DNA extracts labeled A – H
Shipped Dec 2003 –Jan 2004 to 84 laboratories for quantification; data received back by April 2004
Labs were requested to use multiple methods / multiple analysts

We received data from 80 Labs (95%) **Total of 287 sets of data** Participants used <u>19 different quantification methods</u> 21% were obtained using newly available quantitative real-time PCR (Q-PCR) techniques

| 80 unique labs participated<br>287 data sets<br>Multiple<br>detection assays<br>instrument platforms<br>laboratories<br>analysts |  | Signal                                        | Instrument                                                                                                         | Code                        | Labs                         | Set                   | Ref     |                                             |                                                                  |                                               |                            |                                                                          |                |                |                |                 |
|----------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|-----------------------|---------|---------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|----------------------------|--------------------------------------------------------------------------|----------------|----------------|----------------|-----------------|
|                                                                                                                                  |  | Proby<br>Picogreen<br>EBBr<br>Solution<br>UCL | TLA<br>TD20/20<br>TR<br>FA<br>LF320<br>PBC4000<br>PK_FL<br>SMAX<br>?<br>visual<br>visual<br>kl<br>visual<br>cCDBRO | a a a P P P P P P Y A A E E | 43 1 2 1 1 2 1 2 1 2 4 1 2 2 | 93131123214<br>104011 | 21 - 21 |                                             |                                                                  |                                               |                            |                                                                          |                |                |                |                 |
|                                                                                                                                  |  |                                               |                                                                                                                    |                             |                              |                       |         | Ē                                           | ÷.                                                               | Colorimetry                                   | SSWD<br>SSWF<br>TMB        | visual<br>visual<br>visual                                               | D<br>F<br>T    | 3<br>4<br>31   | 11<br>6<br>98  |                 |
|                                                                                                                                  |  |                                               |                                                                                                                    |                             |                              |                       |         | ndpoint PCR<br>cal Time PCR<br>-<br>-<br>-  | BodeQuant<br>Quantidder<br>Alu Q-PCR<br>Alu,Sido                 | Fluorescence<br>Fluorescence                  | Picogreen<br>Probe<br>Sybr | CF4000<br>ABI7000<br>ABI7700<br>ABI7900<br>RG3000<br>ABI7000<br>i-Cycler | 000112         | 1 16 1 2 2 1 1 | 1 32 2 3 4 1 2 | 32 25 - 26 - 27 |
|                                                                                                                                  |  |                                               |                                                                                                                    |                             |                              |                       |         | Samples<br>Results<br>A large a<br>Multiple | s shipped Dec<br>came in April<br>amount of dat<br>questions and | ember 2003<br>5, 2004<br>a!<br>d trends can l | though Jar                 | uary 2004<br>ated                                                        | 7.45.5.6.67.80 |                |                | 1 2 2 1 3 2     |







### P.M. Vallone – NIST ACS Talk

## Design

- The ILS should be designed to answer a specific question(s)
- The ILS is focused on a (validated?) method currently performed in the community
- Through coordinating multiple studies we learn what to do better next time

# Use of ILS data

- Value assignment of a material
  - Determine a consensus value for a material to be used as a reference (control material) when a suitable higher order standard is not available
  - All methods used should be previously validated
- Comparability of different analysis
   methods/instrumentation used on the same
   material
- Comparability of the same analysis methods/instrumentation used on the same material



# What is needed to test a new Technology?

- Platform(s) common to the community
- A foundation of validation within the community
- For Biothreat detection surrogate materials need to be developed for the ILS

## How can NIST help?

- Assistance in experimental design
- Analysis of data that results from ILS
   Independent analysis & reporting

Informatics and statistical expertise

## Acknowledgements

- Dr. Jayne Morrow
- Dr. John M. Butler

peter.vallone@nist.gov http://www.cstl.nist.gov/biotech/strbase/