

NIST Inter-Laboratory Studies for DNA Mixture Interpretation

会议会议会议会议会议会议会议会议会议会议

Michael D. Coble, PhD

Carolyn R. Hill, MS; David L. Duewer, PhD; and Margaret C. Kline, MS

National Institute of Standards and Technology 66th Annual AAFS Meeting February 20, 2014 Seattle, WA

NIST and NIJ Disclaimer

Past and Present Funding: Interagency Agreement between the National Institute of Justice and NIST Office of Law Enforcement Standards


Points of view are mine and do not necessarily represent the official position or policies of the US Department of Justice or the National Institute of Standards and Technology.

Certain commercial equipment, instruments, software and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Interlaboratory Studies

- The method by which multiple laboratories compare results and demonstrate that the methods used in one's own laboratory are reproducible in another laboratory.
- These tests are essential to demonstrate consistency in results from multiple laboratories.

(J.M. Butler, Forensic DNA Typing, p. 216)

- Mixed Stain Study 1 (MSS1)
- April 1997 November 1997
- 22/28 labs participated
- 6 reference samples, 4 two-person mixtures, 1 three-person mixture (stains on paper)
- Focus = donor types given a complete set of reference sources.

NIST DNA Mixture Interlab Studies

- Mixed Stain Study 2 (MSS2)
- January 1999 May 1999
- · 45/52 labs participated
- Part A = 4 reference samples, 1 two-person mixture, 1 three-person mixture (stains on paper)
- Part B = 1 mixture at 5 different concentrations
- Focus = donor types given an incomplete set of references; DNA Quantification Study.

MSS1 and MSS2

J Forensic Sci 2001;46(5):1199-1210.

TECHNICAL NOTE

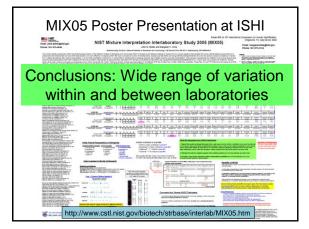
David L. Duewer,¹ Ph.D.; Margaret C. Kline,² M.S.; Janette W. Redman²; Pamela J. Newall,³ M.A.; and Dennis J. Reeder,²⁴ Ph.D.

NIST Mixed Stain Studies #1 and #2: Interlaboratory Comparison of DNA Quantification Practice and Short Tandem Repeat Multiplex Performance with Multiple-Source Samples*,[†]

reenno	logy in mo	uon	
TABLE 3—STR Mu	ltiplexes used l	by participants.	
STR Multiplex	#Loci	MSS1	MSS2
AmpFℓSTR Blue TM	3	4	2
AmpFℓSTR COfiler TM	5		23
AmpFℓSTR CTT	3	3	1
AmpFℓSTR Green TM I	3	3	2
AmpFℓSTR Green TM II	3	4	
AmpFℓSTR Profiler TM	10	6	
AmpFℓSTR Profiler Plus TM	10	2	30
AmpFℓSTR Yellow TM	3	1	
BHO Quad	4	2	
Promega CTTv	4	1	
Promega FFv	3	1	
Promega PowerPlex TM 1.1	8	9	11 -
Promega PowerPlex TM 1.2	8	1	1
Promega PowerPlex TM 2.1	9		
	Total	37	70

Instruments		MSS1	MSS2
ABI 310		5	21
ABI 373		1	1
ABI 377		7	11
Hitachi FMBio		10	11
MD FLuorImager		1	1
Silver stain			
	Total	25	45

NIST DNA Mixture Interlab Studies

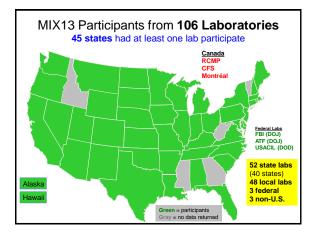

- Mixed Stain Study 3 (MSS3)
- December 2000 October 2001
- 74/83 labs participated
- 1 single-source, 5 two-person mixtures, 1 threeperson mixture (all extracts)
- Focus = effect of DNA quantitation on STR typing performance.

Coble – NIST Mixture Interlaboratory Studies

NIST DNA Mixture Interlab Studies

- Mixture Study 2005 (MIX05)
- January 2005 August 2005
- · 69/94 labs participated
- 4 two-person mixtures (only electronic data)
- Focus = evaluate the "lay of the land" and determine future needs for training and tools for interpretation.

02/20/2014	ŀ
------------	---


HOW MIX13	B differs from N	/IIX05 study
	MIX13 (2013)	MIX05 (2005)
Response	106 labs	69 labs
Number of cases provided	5 cases	4 cases
Case types being mimicked	Sexual assault & touch evidence	Sexual assault evidence
Mixture complexity	2, 3, >3-person (potentially related, low-template, inclusion/exclusion)	all 2-person (all unrelated, male/female; various major/minor ratios)
Scenarios provided	Yes	No


MIX 13 – NIST Interlaboratory Study on Mixture Interpretation - Purpose

- MIX05 conducted in 2005. Since then a great deal of effort has been focused on improvements in DNA mixture interpretation.
- 2010 SWGDAM Guidelines approved in January 2010 many labs have changed their protocols recently.
- MIX13 Interpretation challenge no samples to run.

MIX 13 – NIST Interlaboratory Study on Mixture Interpretation - Goals

- (1) To evaluate the current "lay of the land" regarding STR mixture interpretation across the community.
- (2) To measure consistency in mixture interpretation across the U.S. after the publication of the 2010 SWGDAM guidelines.
- (3) To learn where future training and research could help improve mixture interpretation and reporting.

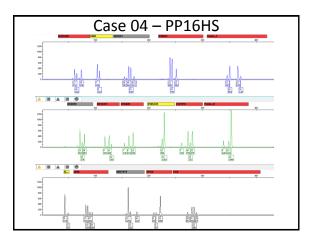
Due to the number of laboratories responding and the federal, state, and local coverage obtained, this MIX13 interlaboratory study can be assumed to provide a reasonable representation of current U.S. forensic DNA lab procedures across the community

MIX13 was also used an intra-lab study

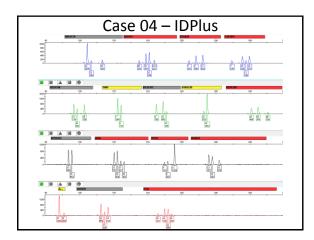
Comments from TL of a MIX13 Lab

- Thank you for the opportunity to participate in this exercise! Some of these were very challenging and provoked a lot of conversation.
- I had a majority of the analysts in our Forensic Biology Unit interpret these profiles independently in an effort to identify inconsistencies and areas where we need to improve. It was very interesting how much the results varied! I've included two spreadsheets that demonstrate this – "MIX13 summary of allele calls" and "MIX13 summary of stats and conclusions."

16 different analysts examined the data in this particular lab


	Purpose of MIX13 Cases
	Challenge provided to study responses
Case 1	~1:1 mixture (2-person)
Case 2	Low template profile with potential dropout (2-person)
Case 3	Potential relative involved (3-person)
Case 4	Minor component (2-person)
Case 5	Complex mixture (>3-person) with # of contributors ; inclusion/exclusion issues
According to Ge	rman Stain Commission (2009) mixture types: 1 = A, 2 = C, 3 = ?, 4 = B, 5 = ?

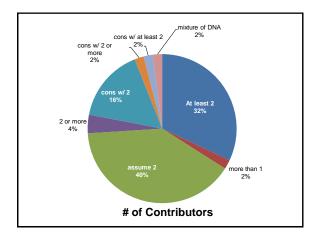
Case 04 - Bite Mark Evidence

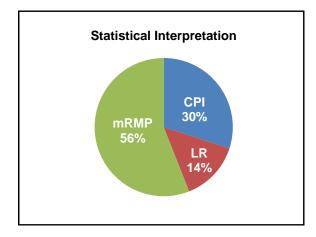

Minor component (2-person) "German Type B"

Scenario

- Evidence: saliva swab from a bite mark on the victim.
- A female waiting at a bus stop in the late evening is attacked from behind and pushed to the ground. A motorist driving by witnesses the attack, pulls his car over, and runs to her aid. As the Good Samaritan comes upon the scene, the perpetrator bites the victim on the back of her neck before running away.
- The motorist is able to give a good description of the perpetrator and a few days later, the police arrest a suspect. He is positively identified in a police lineup by the witness.

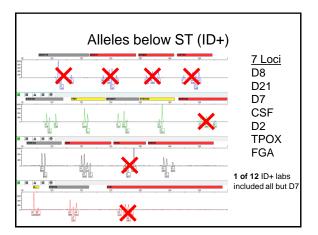


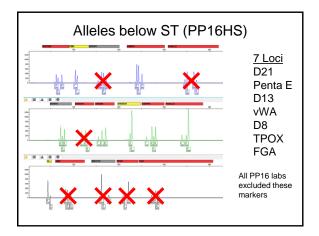

Individual	Inclusion?	Ratio
Victim	Included	~3.5
Suspect 4A	Included	1

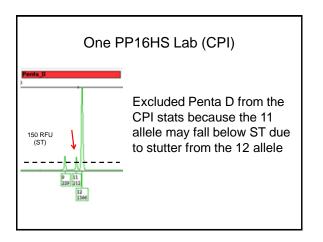

Coble – NIST Mixture Interlaboratory Studies

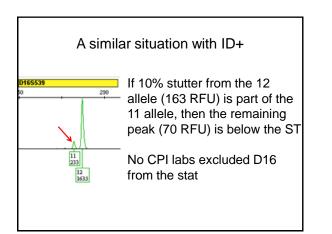
Primary Goals

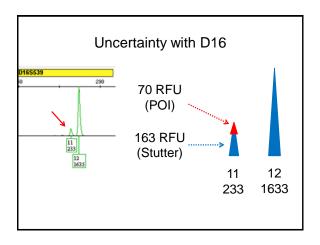
- Primary purpose will labs choose to deconvolve this mixture since the mixture ratio is close to the limit of deconvolution for many labs?
- All labs have included the suspect in the mixture.

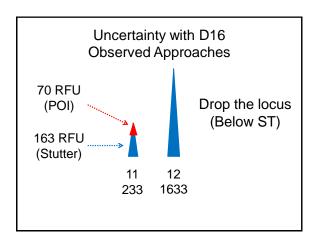



Coble – NIST Mixture Interlaboratory Studies

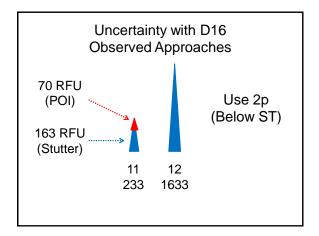

• Stats ranged from 1 in 3,070 to 1 in 862,000 with a median of 1 in 14,380.

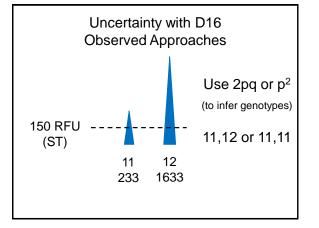


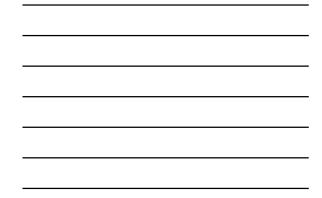


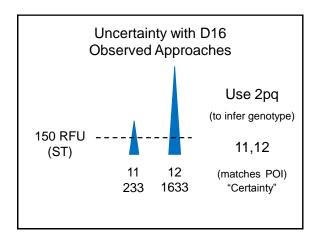


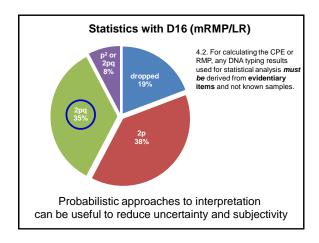
mRMP/LR Analysis


• Stats ranged from 1 in 358,000 to 1 in 412 Quintillion with a median of 1 in 2.58 Quadrillion







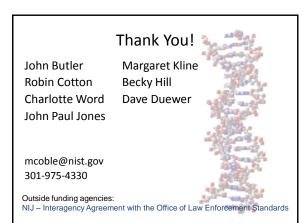


Summary

- · Most labs have validated and implemented AT and STs variation in interpretation across the US.
- An Idea if everyone uses the same AT/ST, then one ٠ would expect to see similar results.
- Reality the results were all over the place, Some of this was to be expected since each lab's protocol is different (e.g. dropping a locus vs, 2p).
- Probabilistic approaches will also deconvolve the mixture • (without dropping loci), and can do so without bias.

NIST/NRC Postdoc Program

- Selected Topics Rapid DNA Typing DNA Mixture Analysis rensic Applications of Next-Gen Sequencing DNA Extraction efficiency Forensic SNPs Y-STRS
- Current stipend (2014) is \$66,256 per year - Currently a limit of 120 slots per year
 - Congressionally-mandated program for NIST
 - Maximum 2-year appointments
- Awardees must be U.S. citizens
- Open to su ested topics


Fore

- Awardees are chosen through a national competition administered by the National Research Council of the National Academy of Sciences.
- · Two competitions per year
 - deadlines of February 1 and August 1
- · Contact either Dr. Peter Vallone (peter.vallone@nist.gov) or or Dr. Michael Coble (michael.coble@nist.gov)

http://www.nist.gov/iaao/postdoc.cfm

•

http://nrc58.nas.edu/RAPLab10/Opportunity/Program.aspx?LabCode=50

