

American Academy of Forensic Sciences Washington, DC February 21, 2013

NIST STRBase Resources to Aid Work with New STR Kits and Loci

John M. Butler, Ph.D.

NIST Applied Genetics Group

Product Disclaimer for AAFS

- I will mention commercial STR kit names and information, but I am in no way attempting to endorse any specific products.
- SRM 2391c is a Standard Reference Material sold by NIST for measurement calibration purposes.
- <u>NIST Disclaimer</u>: Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.
- Points of view are mine and do not necessarily represent the official position of the National Institute of Standards and Technology or the U.S. Department of Justice. Our group receives or has received funding from the FBI Laboratory and the National Institute of Justice.

NIST STRBase Website

Serving the Forensic DNA Community for >15 Years

A Brief History of the STRBase Website

- Initial information was collected on STR markers while working on my PhD dissertation in 1993-1995
- Started a review article in 1996 while a NIST postdoc but wanted to create a dynamic rather than an out-of-date resource
- Created hundreds of individual web pages that were hyperlinked together
- Website launched in July 1997 (discussed at ISHI 1997)
- Became a NIST Standard Reference Database (SRD 130) because of its high visibility
- I continue to update the website (via an HTML editor)...
- I have more information than I have had time to upload (i.e., there is additional information in development)

Core STRBase Information

Forensic STR Information

- STRs101: Brief Introduction to STRs
- <u>Core Loci</u>: FBI CODIS Core STR Loci and European Core Loci
- STR Fact Sheets (observed alleles and PCR product sizes)
- <u>Multiplex STR kits</u>
- <u>Sequence Information (annotated)</u>
- o <u>Variant Allele Reports</u> ♦
- <u>Tri-Allelic Patterns</u>
- Mutation Rates for Common Loci
- <u>Published PCR primers</u>
- o <u>Y-chromosome STRs</u> ◆
- Low-template DNA Information
- Mixture Interpretation
- <u>Kinship Analysis</u>
- o <u>miniSTRs (short amplicons)</u> ◆
- Null Alleles discordance observed between STR kits
 - STR Reference List now 3687 references

₽E

Multiplex STR Kit Information

STR Kits from Applied Biosystems (Foster City, CA)

- Amp
 <u>Identifiler</u>: D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D1
- AmpF@STR <u>Identifiler</u> Direct: <u>D8S1179</u>, <u>D21S11</u>, <u>D7S820</u>, <u>CSF1PO</u>, <u>D3S1358</u>, <u>TH01</u>, <u>D13S317</u>, <u>D16S539</u>, <u>D2S1338</u>, <u>D19S433</u>, <u>VWA</u>, <u>T</u>
- AmpF@STR Identifiler Plus: D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPC
- AmpF@STP_NGM: <u>D1081248</u>, <u>VWA</u>, <u>D168539</u>, <u>D281338</u>, <u>Amelogenin</u>, <u>D881179</u>, <u>D21811</u>, <u>D18851</u>, <u>D2281045</u>, <u>D198433</u>, <u>TH01</u>, <u>FGA</u>, <u>D198433</u>, <u>TH01</u>, <u>T</u>
- AmpF@STR NGM SElect: D10S1248, VWA, D16S539, D2S1338, Amelogenin, D8S1179, D21S11, D18S51, D22S1045, D19S433, TH01.
- AmpF&STR GlobalFiler: <u>D5S1358</u>, <u>VWA</u>, <u>D16S539</u>, <u>CSF1PO</u>, <u>TPOX</u>, <u>Yinde1</u>, <u>Amelogenin</u>, <u>D8S1179</u>, <u>D21S11</u>, <u>D18S51</u>, <u>DYS391</u>, <u>D2S441</u>, <u>D2S1338</u>
- AmpF@STR VeriFiler: <u>D10S1248</u>, <u>D1S1656</u>, <u>Amelogenin</u>, <u>D2S1338</u>, <u>D22S1045</u>, <u>D19S433</u>, <u>TH01</u>, <u>D2S441</u>, <u>D6S1043</u>, <u>D12S391</u>
- AmpF@STR MiniFiler: <u>D13S317</u>, <u>D7S820</u>, <u>Amelogenin</u>, <u>D2S1338</u>, <u>D21S11</u>, <u>D16S539</u>, <u>D18S51</u>, <u>CSF1PO</u>, <u>FGA</u>
- AmpF@STR <u>Yfiler</u>: DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635, DYS392, Y
- AmpF@STR <u>SGM Plus</u>: <u>D3S1358</u>, <u>VWA</u>, <u>D16S539</u>, <u>D2S1338</u>, <u>Amelogenin</u>, <u>D8S1179</u>, <u>D21S11</u>, <u>D18S51</u>, <u>D19S433</u>, <u>TH01</u>, <u>FGA</u>
- AmpF@STR Profiler Plus: D3S1358, VWA, FGA, Amelogenin, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820
- AmpF&STR Profiler Plus ID: D3S1358, VWA, FGA, Amelogenin, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820
- AmpF&STR COfiler : D3S1358, D16S539, Amelogenin, TH01, TPOX, CSF1PO, D7S820
- AmpF&STR Sinofiler (available only in China): <u>D8S1179</u>, <u>D21S11</u>, <u>D7S820</u>, <u>CSF1PO</u>, <u>D3S1358</u>, <u>D5S818</u>, <u>D13S317</u>, <u>D16S539</u>, <u>D2S1</u>
- AmpF@STR Profiler: D3S1358, VWA, FGA, Amelogenin, TH01, TPOX, CSF1PO, D5S818, D13S317, D7S820
- AmpF@STR <u>SEfiler</u>: <u>D3S1358</u>, <u>VWA</u>, <u>D16S539</u>, <u>D2S1338</u>, <u>Amelogenin</u>, <u>D8S1179</u>, <u>SE33</u>, <u>D19S433</u>, <u>TH01</u>, <u>FGA</u>, <u>D21S11</u>, <u>D18S51</u>
- AmpF@STR <u>SEfiler</u> Plus: D3S1358, VWA, D16S539, D2S1338, Amelogenin, D8S1179, SE33, D19S433, TH01, FGA, D21S11, D18S51
- AmpF@STR Green I : <u>Amelogenin</u>, <u>TH01</u>, <u>TPOX</u>, <u>CSF1PO</u>
- AmpFℓSTR Blue: <u>D3S1358</u>, <u>VWA</u>, <u>FGA</u>

http://www.cstl.nist.gov/strbase/multiplx.htm

AmpF/STR[®] Identifiler™

The schematic diagram illustrates the fluorescent dye label color and relative PCR product size ranges for the various STR loci present in this particular kit. Click on the locus name to learn more about the STR marker of interest.

http://www.cstl.nist.gov/strbase/kits/Identifiler.htm

STR Fact Sheet for D8S1179

D8S1179

Other Names	Chromosomal Location	GenBank Accession
D6S502 <u>UniSTS</u> : <u>83408</u>	8q24.13 Chr 8; 125.976 Mb (May 2004, NCBI build 35)	<u>G08710;</u> has 12 repeat units AF216671; has 13 repeat units

Repeat: [TATC] = GenBank top strand (called [TCTA] by FSS {375})

Reported Primers	Ref.	PCR Primer Sequences		
Set 1	369	5' - TTTTTGTATTTCATGTGTACATTCG - 3' 5' - CGTAGCTATAATTAGTTCATTTTCA - 3'		
Set 2	PE ABI	Profiler Plus (JOE labeled), SGM Plus (JOE labeled), Identifiler (6-FAM labeled)		
Set 3 Promega		PowerPlex 2.1 (TMR labeled), PowerPlex 16 (TMR labeled) primer sequences 5'-ATTGCAACTTATATGTATTTTGTATTTCATG-3' 5'-[TMR]-ACCAAATTGTGTTCATGAGTATAGTTTC-3'		

PCR Product Sizes of Observed Alleles

	Allele (Repeat #)	Set 1	Set 2	Set 3	Repeat Structure	<u>Ref.</u>
	7	157 bp	123 bp	203 bp	[TCTA]7	716
_ [(

19	205 bp	171 bp	251 bp	[TCTA] ₂ [TCTG] ₂ [TCTA] ₁₅		716
20	209 bp	175 bp	255 bp			variant allele
		1.1.7			V	

Allelic Ladders: Commercially available from Promega and Applied Biosystems

Common Multiplexes: PowerPlex 2.1, PowerPlex 16, Profiler Plus, SGM Plus, Identifiler

Mutation Rate: 0.14%

http://www.cstl.nist.gov/strbase/str_D8S1179.htm

Information on Variant Alleles

- We collect contributions from all over the world where unusual results have been observed with STR data
- Enables laboratories to check if others have seen a specific variant allele or tri-allelic pattern
- Currently (as of Nov 30, 2012 update)
 661 variants at 41 loci
 329 tri-allelic patterns at 33 loci

From D2S1338 Variants Table (http://www.cstl.nist.gov/strbase/var_D2S1338.htm)

Allele Designation	Allele Size	Instrument	Amp Kit*	Contributor	Verification/Conformation Method(s)	Notes	Frequency
11	290.61	ABI 310	ID	Cintia alves, IPATIMUP, Porto, Portugal	Re-extracted and re-amplified	Portuguese Caucasian sample	1 in 780

http://www.cstl.nist.gov/strbase/var_tab.htm

Additional U.S. Core CODIS Loci Are Coming...

D.R. Hares (2012) Expanding the CODIS Core Loci in the United States. *Forensic Sci. Int. Genet.* 6(1): e52-e54 Addendum to expanding the CODIS core loci in the United States, Forensic Sci. Int. Genet. 6(5): e135

What	Why	Who/How	When		
Form a Working Group (WG) to discuss initial selection	Establishes target goals	CODIS Core Loci Working Group with FBI Chair and 5 members; Web meetings	May 2010 - present		
Announce proposed additional CODIS core loci	Sets desired target goals and informs manufacturers	WG Chair; Publish proposed listing of CODIS core loci	April 2011 online (published Jan 2012)		
Ongoing Progress Reports	Provides updates for DNA community	WG Chair; Present updates on status of CODIS Core Loci project at meetings	2010-2012		
Implementation Considerations & Strategy	Identify issues for implementation and timeline	WG	June 2011 - present		
Manufacturers develop	Creates tools to meet target	Manufacturers; Provide status	2011-2012		
рюютуре киз	goals	reports to we for timeline			
Test and validate prototype kits	Examines if target goals can be met	Validation Laboratories; Follow QAS compliant validation plan	Beginning in 2012		
Test and validate prototype kits Review and evaluate data from validation	Examines if target goals can be met Evaluates if desired performance is obtained	Validation Laboratories; Follow QAS compliant validation plan NIST, SWGDAM and FBI; Provide feedback, if any, to Manufacturers	Beginning in 2012 In conjunction with and at the conclusion of validation		
Test and validate prototype kits Review and evaluate data from validation Selection of new CODIS core loci	Examines if target goals can be met Evaluates if desired performance is obtained Allows protocols to be established	Validation Laboratories; Follow QAS compliant validation plan NIST, SWGDAM and FBI; Provide feedback, if any, to Manufacturers FBI; seek input from DNA community and stakeholders; Notify Congress	Beginning in 2012 In conjunction with and at the conclusion of validation After evaluation of validation data and kit production factors		

http://www.fbi.gov/about-us/lab/codis/planned-process-and-timeline-forimplementation-of-additional-codis-core-loci

STR Marker Layouts for New U.S. Kits

Information on "New" STR Loci

STR Chromosomal		Physical	Repeat	Ladder	
Locus Location		Position	Motif	Range	
D191656	1010	Chr 1	compound	10 to 10 2	
D131030	1942	230.905 Mb	TAGA	101019.3	
D29444	2n14	Chr 2	compound	9 to 17	
D23441	2014	68.239 Mb	TCTA/TCAA	01017	
0=00	6q14	Chr 6	complex		
SE33	beta-actin related	88.987 Mb	AAAG	6.3 to 36	
	pseudogene		· .		
D10S1248	10a26.3	Chr 10	simple	8 to 19	
D1001240	10920.0	131.093 Mb	GGAA	0 10 10	
D128201	10012.0	Chr 12	compound	14 to 27	
D123391	12013.2	12.450 Mb	AGAT/AGAC	14 10 27	
D2281045	22~12.2	Chr 22	simple	9 to 10	
DZZ31043	22412.3	37.536	ATT	01019	

Butler, J.M., & Hill, C.R. (2013) *Topics on Forensic DNA Analysis: Current Practices and Emerging Technologies* (CRC Press). Chapter 9. Biology and Genetics of New Autosomal STR Loci Useful for Forensic DNA Analysis (in press)

STR Locus D12S391 "Variant" Alleles

What is defined as a variant (or off-ladder) allele by a laboratory is typically based on alleles present in STR kit allelic ladder

D12S391 variant alleles (126 total) reported so far in STRBase

(data provided based on **123 NGM SElect**, 1 ESI16, 1 NGM, and 1 PP21)

Variant	# times	Variant	# times	
16.1	1x	19.1	1x	1
17.1	2x	20.1	2x	
17.3	43x	20.3	2x	
18.1	3x	21.3	1x	
18.3	66x	28	1x	

<u>tri-allele reported</u> 17,19,20

Sinofiler (China)

NIST SRM 2391c

Component D is a mixture

- Contains certified values for 29 autosomal STR loci and 17 Y-STR loci available in commercial kits (plus some additional reference values for miniSTRs)
- In 2013, we plan to add certified values for the six additional Y-STR loci in PowerPlex Y23 and any new loci included in Life Technologies Y-STR kit

NIST SRM 2391c Component D Provides a Single Base Resolution Challenge

Resolution challenges exist with D12S391 alleles 18.3 and 19, which differ by a single nucleotide; resolution can be impacted by the size of the PCR products in the specific STR kit and electrophoresis conditions (especially run voltage and polymer concentration)

NIST U.S. Population Data

NA Data [Autosomal Markers] [Y-Chromosome Markers] [Mitochondrial DNA]

NIST 1036 U.S. Population Dataset - 29 autosomal STR loci and 23 Y-STR loci 🏼

- covers all STR loci present in current commercially available STR kits from Life Technologies and Promega Corporation
- Butler, J.M., Hill, C.R., Coble, M.D. (2012) Variability of new STR loci and kits in U.S. population groups. <u>Profiles in DNA</u>. Available at http://www.promega.com/resources/articles/profiles-in-dna/2012/variability-of-new-str-loci-and-kits-in-us-population-groups/
 Data as Excel file
- We have analyzed 1036 unrelated samples with 29 autosomal STRs and 23 Y-STRs (all current STR and Y-STR kit loci)
- Becky Hill and Mike Coble will describe this data set in more detail in their AAFS presentations

NIST	

From NIST 1036 data set	(Butler et al. 2012 Profiles in DNA
-------------------------	-------------------------------------

Applied	_	Tota	al	F	Populations, %			
Genetics	Allele	#	%	AfAm	Asian	Cauc	Hisp	
ess).	14	1	0.0	0.1				
in pr	15	105	5.1	7.7	4.1	3.2	4.4	
net. (16	84	4.1	6.7	1.0	2.2	4.2	
Ge	17	258	12.5	16.7	8.2	12.7	7.6	
ci. Im	17.1	3	0.1	0.4				
sic S	17.3	<mark>26</mark>	1.3	0.4		2.1	1.7	
oren	18	432	20.8	25.3	26.3	17.2	17.8	
oci. F	18.1	1	0.0	0.1				
TR IC	18.3	27	1.3	0.4		2.5	1.3	
nal S	19	<mark>314</mark>	15.2	14.8	17.5	12.5	18.9	
uoso:	19.1	7	0.3	0.9			0.2	
9 aut	19.3	10	0.5	0.4	0.5	0.4	0.6	
for 2	20	262	12.6	10.4	19.6	11.1	15.5	
data	20.1	2	0.1	0.3				
ation	20.3	1	0.0				0.2	
opula	21	209	10.1	6.4	9.8	12.9	11.2	
S. p	22	137	6.6	3.7	5.7	9.6	6.8	
13) U	22.2	1	0.0				0.2	
. (20	23	102	4.9	2.9	2.6	6.9	5.7	
et al	24	53	2.6	1.3	1.0	4.7	1.7	
C.R.	24.3	1	0.0		0.5			
Hill, (25	24	1.2	0.9	1.5	1.7	0.6	
	26	7	0.3		1.0	0.3	0.6	
1Z	27	5	0.2		0.5	0.1	0.6	

D12S391 NIST U.S. Allele Frequencies

Theoretical heterozygotes (2pq)

2 x 0.013 x 0.208 = **0.54%** (17.3,18) 2 x 0.013 x 0.152 = **0.40%** (18.3, 19)

Observed heterozygotes with a single nucleotide difference 9 out of 1036 = 0.87%

> 17, 17.1 **17.3**, **18** (3x) 18, 18.1 **18.3**, **19** (2x) 19, 19.1 19.3, 20

Recent NIST Publications on "New" STR Loci

- 1. Hill, C.R., Duewer, D.L., Kline, M.C., Sprecher, C.J., McLaren, R.S., Rabbach, D.R., Krenke, B.E., Ensenberger, M.G., Fulmer, P.M., Stort, D.R., Butler, J.M. (2011) Concordance and population studies along with stutter and peak height ratio analysis for the PowerPlex® ESX 17 and ESI 17 Systems. *Forensic Sci. Int. Genet.* 5(4): 269-275.
- 2. O'Connor, K.L., Hill, C.R., Vallone, P.M., Butler, J.M. (2011) Linkage disequilibrium analysis of D12S391 and vWA in U.S. population and paternity samples. *Forensic Sci. Int. Genet.* 5(5): 538-540.
- 3. Butler, J.M., Hill, C.R., Kline, M.C., Bastisch, I., Weirich, V., McLaren, R.S., Storts, D.R. (2011) SE33 variant alleles: sequences and implications. *Forensic Sci. Int. Genet.: Suppl. Ser.* 3: e502-e503.
- 4. Butler, J.M. (2012) Advanced Topics in Forensic DNA Typing: Methodology. Elsevier Academic Press: San Diego. [pp. 120-121]
- 5. Butler, J.M. and Hill, C.R. (2012) Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. *Forensic Sci. Rev.* 24(1): 15-26.
- 6. Butler, J.M., Hill, C.R., Coble, M.D. (2012) Variability of new STR loci and kits in U.S. population groups. <u>*Profiles in DNA*</u>. Available at <u>http://www.promega.com/resources/articles/profiles-in-dna/2012/variability-of-new-str-loci-and-kits-in-us-population-groups/</u>.
- 7. Hill, C.R., Duewer, D.L., Kline, M.C., Coble, M.D., Butler, J.M. (2013) U.S. population data for 29 autosomal STR loci. *Forensic Sci. Int. Genet. (in press)*.
- 8. Butler, J.M., & Hill, C.R. (2013) *Topics on Forensic DNA Analysis: Current Practices and Emerging Technologies* (CRC Press). Chapter 9. Biology and Genetics of New Autosomal STR Loci Useful for Forensic DNA Analysis *(in press).*

http://www.cstl.nist.gov/strbase/NISTpub.htm

Applied Genetics

Forensic STR loci are not linked to disease...

Katsanis, S.H., & Wagner, J.K. (2013) Characterization of the standard and recommended CODIS markers. *Journal of Forensic Sciences, 58(S1),* S169-S172.

JOURNAL OF FORENSIC SCIENCES

TECHNICAL NOTE

CRIMINALISTICS; JURISPRUDENCE

Sara H. Katsanis,¹ M.S. and Jennifer K. Wagner,² J.D., Ph.D.

Characterization of the Standard and Recommended CODIS Markers*

See also on http://www.swgdam.org/

Open SWGDAM Letter Regarding the Claims Raised in State v. Abernathy that the CODIS Core Loci are Associated with Medical Conditions/Disease States J Forensic Sci, January 2013, Vol. 58, No. S1 doi: 10.1111/j.1556-4029.2012.02253.x Available online at: onlinelibrary.wiley.com

"...we found no documentation of individual genotypes for the 24 STRs [the current and recommended CODIS loci] to be causative of any documented phenotypes either in the literature or in the interrogated databases."

"The utility of the CODIS profile ... is limited to identification purposes at this time."

"...we can affirm that individual genotypes are not at present revealing information beyond identification."

Additional Information Needed/Planned

- Mutation rate information to aid kinship analysis

 More father/son studies are needed with D12S391,
 D1S1656, D2S441, D10S1248, and D22S1045
- A complete summary of flanking region variation and null alleles produced from primer binding site mutations
- Future plans for STRBase: listing of full sequences for detected STR alleles (repeats and flanking regions) to aid next-generation sequencing efforts
 - Will enable nomenclature and classification of sub-allele variation for STR markers

Summary

- The U.S. forensic DNA community will soon expand to additional STR loci and new kits are now available to help with this effort
- New information is being developed at NIST, published, and added to STRBase to aid understanding of these additional STR loci
- STRBase can be a model for other forensic disciplines in sharing information with the forensic science community

Mixture Section of STRBase

- **Training workshop slides** (thousands of slides of training materials available from 7 workshops)
- SWGDAM Mixture
 Committee resource page

(contains worked mixture examples by Bruce Heidebrecht, Maryland State Police DNA Technical Leader)

- Links to mixture
 interpretation software
 (currently 12 links)
- Literature references (currently 144 articles)

Literature listing by topic for 144 articles

Topic category	# References
Mixture Principles & Recommendations	13
Setting Thresholds	11
Stutter Products & Peak Height Ratios	19
Stochastic Effects & Allele Dropout	18
Estimating the Number of Contributors	15
Mixture Ratios	9
Statistical Approaches	23
Low Template DNA Mixtures	8
Separating Cells to Avoid Mixtures	3
Software (plus 12 websites)	7
Probabilistic Genotyping Approach	11
General Information on Mixtures	7

http://www.cstl.nist.gov/strbase/mixture.htm

April 12 NIST DNA Mixture Webinar

DNA Analyst Training on Mixture Interpretation SAVE THE DATE

Purpose:

The National Institute of Standards and Technology (NIST) will host a free one-day workshop on interpreting forensic DNA mixtures in casework. This workshop will be webcast live to maximize participation by forensic DNA analysts.

Agenda:

The workshop and webcast is expected to start at 8:30 AM ET and end at 5:00 PM ET on April 12, 2013. The agenda will be finalized closer to the workshop date.

Abstract:

DNA mixtures can be difficult to interpret and represent one of the biggest challenges faced by forensic laboratories today. With the success of DNA in the criminal justice system giving rise to expanded case acceptance policies, many DNA analysts are coping with complex mixtures arising from three or more contributors and/or low-level DNA

(a)

http://www.nist.gov/oles/forensics/dna-analyst-training-on-mixture-interpretation.cfm

Acknowledgments

Community feedback and contributors to the NIST STRBase website

Forensic DNA Team

John

Butler

Becky Hill

Margaret Kline

Dave Duewer

Pete Vallone

Kevin Kiesler

Funding from the **National Institute of Justice (NIJ)** through NIST Law Enforcement Standards Office (OLES) Funding from the **FBI Laboratory** through NIST Information Access Division

Erica

Butts

DNA Biometrics Team

Contact info: john.butler@nist.gov 301-975-4049

NIST Disclaimer: Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Points of view are those of the presenters and do not necessarily represent the official position of the National Institute of Standards and Technology or the U.S. Department of Justice.