

Concordance Testing Comparing STR Multiplex Kits with a Standard Data Set

Becky Hill, Margaret Kline, David Duewer, Peter Vallone, and John Butler National Institute of Standards and Technology American Academy of Forensic Sciences Chicago, IL February 25, 2011

Disclaimer

<u>NIST Funding</u>: Interagency Agreement 2008-DN-R-121 between the National Institute of Justice and NIST Office of Law Enforcement Standards

NIST Disclaimer: Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Points of view are mine and do not necessarily represent the official position or policies of the US Department of Justice or the National Institute of Standards and Technology.

Outline of Topics to Discuss

- Introduction and importance of concordance testing
 - Overlapping markers with different primer configurations
- NIST role in concordance testing
 - SRM 2391b concordance with new kits
 - Standard sample set, DNA sequencing
- Commercial STR multiplex kits examined
 Applied Biosystems, Promega, and Qiagen
- Concordance results with various STR
 - multiplex kits
 - Primer binding site mutations and null alleles
- Summary and conclusions

Why are concordance studies important?

Importance of Concordance Testing

- There are a variety of commercial STR multiplex kits with different configurations of STR markers
 - Different primer sequences are used to amplify the same markers
 - Discordant results can impact DNA databases
- Detection of primer binding site mutations that cause null alleles, or allele drop-out
 - Can only be determined with concordance testing and DNA sequencing
- Concordance with NIST reference materials
 - Important to test with all new STR typing kits

Hill, C.R., Kline, M.C., Duewer, D.L., Butler, J.M. (2010) Strategies for concordance testing. *Profiles in DNA (Promega)*, 13(1).

Purpose of Concordance Studies

When different primer sets are utilized, there is a concern that allele dropout may occur due to primer binding site mutations that impact one set of primers but not another

Example Primer Binding Site Mutation that Causes a Null Allele

their primer sequences

To Avoid Overlapping PCR Product Size Ranges with STR Loci in the Same Dye Channel

- Applied Biosystems (Strategy 1)
 - Maintains primer sequences (except MiniFiler & NGM kits)
 - Utilizes mobility modifiers or additional dyes, no primer redesign is necessary
 - Enables comparison to legacy data with earlier kits but null alleles may go undetected with the potential for incorrect genotypes within data sets
- Promega Corporation (Strategy 2)
 - Moves primer sequences to change PCR product size ranges
 - Primer redesign can be difficult, but can be moved from primerbinding-site mutations
 - Requires concordance studies to check for potential allele dropout

Why is NIST involved in concordance studies?

Purpose of Concordance Studies

- To test SRM 2391b (PCR-based DNA Profiling Standard) components with all new STR multiplex kits and verify results against certified reference values
- 2. To gain a better understanding of primer binding site mutations that cause null alleles

What are the NIST strategies for concordance testing?

STR Kit Concordance Testing Profiles in DNA Article Published April 2010

Article Type: Feature

Volume 13 No. 1, April 2010

Strategies for Concordance Testing

Carolyn R. Hill, Margaret C. Kline, David L. Duewer and John M. Butler National Institute of Standards and Technology, Biochemical Science Division, Gaithersburg, Maryland, USA

Concordance evaluations are important to conduct to determine if there are any allelic dropout or "null alleles" present in a data set. These studies are performed because there are a variety of commercial short tandem repeat (STR) multiplex kits with different configurations of STR markers available to the forensic community. The placement of the markers can vary between kits because the primer sequences were designed to amplify different polymerase chain reaction (PCR) product sizes. When multiple primer sets are used, there is concern that allele dropout may occur due to primer-binding-site mutations that affect one set of primers but not another.

http://www.promega.com/profiles/1301/1301_08.html

The 4 "S's" of Concordance

- NIST Standard Samples
 - Run same samples with multiple kits to compare results
- Concordance Software
 - Allows comparison of data sets using NIST developed software

http://www.cstl.nist.gov/biotech/strbase/software.htm

- DNA Sequencing
 - To validate and determine the exact cause for the null allele
- STRBase website
 - To report verified null alleles and discordant results to the forensic community

http://www.cstl.nist.gov/biotech/strbase/NullAlleles.htm

What concordance studies have been completed thus far?

Applied Biosystems AmpF{STR Kits

- Identifiler
- MiniFiler
- Profiler Plus
- SGM Plus
- NGM
- NGM SElect (studies are ongoing)

Hill, C.R., Kline, M.C., Mulero, J.J., Lagace, R.E., Chang, C.-W., Hennessy, L.K., Butler, J.M. (2007) Concordance study between the AmpFISTR MiniFiler PCR Amplification Kit and conventional STR typing kits. *J. Forensic Sci.* 52(4): 870-873.

Promega PowerPlex Systems

- PowerPlex 16
- PowerPlex ESX 17
- PowerPlex ESI 17
- PowerPlex 18D (rapid and direct kit)

Concordance and population studies along with stutter and peak height ratio analysis for the PowerPlex[®] ESX 17 and ESI 17 Systems

Carolyn R. Hill^{a,*}, David L. Duewer^a, Margaret C. Kline^a, Cynthia J. Sprecher^b, Robert S. McLaren^b, Dawn R. Rabbach^b, Benjamin E. Krenke^b, Martin G. Ensenberger^b, Patricia M. Fulmer^b, Douglas R. Storts^b, John M. Butler^a

^a National Institute of Standards and Technology, Chemical Science and Technology Laboratory, Gaithersburg, MD 20899-8312, USA ^b Promega Corporation, Madison, WI 53711-5399, USA

Qiagen Investigator HID Kits

- ESSplex
- IDplex
- Hexaplex ESS (studies are ongoing)

What samples are used at NIST to perform concordance testing?

NIST Sample Set (>1400 Samples)

- NIST U.S. population samples
 - 254 African American, 261 Caucasian, 139 Hispanic,
 3 Asian
- U.S. father/son paired samples
 - 178 African American, 198 Caucasian, 190 Hispanic, 198 Asian
- NIST SRM 2391b, PCR-based DNA Profiling Standard (highly characterized)
 - 10 genomic DNA samples, 2 cell line samples
 - Includes 9947A and 9948

What are the results from the completed concordance studies?

D18S51 Concordance Checking

D18S51 marker positions for all kits tested

Primer Set Compared

Marker	# of Sets	Marker	# of Sets	
D18S51	10	D2S441	7	
Amelogenin	10	D19S433	7	
D21S11	10	D1S1656	5	
FGA	10	D12S391	5	
D3S1358	9	D5S818	4	
TH01	9	D7S820	4	
D16S539	9	D13S317	4	
vWA	9	SE33	4	
D8S1179	9	TPOX	3	
D2S1338	8	CSF1PO	3	
D10S1248	7	Penta D	1	
D22S1045	7	Penta E	1	

D22S1045 Discordance

G→T 15 bp upstream impacting forward primer binding with ESX17 - Promega added additional primer to correct issue

D22S1045 Null Allele

G→T 15 bp upstream impacting forward primer binding with NGM

Amelogenin X Null Allele

D2S441 Null Allele

8/9 null alleles were from Asian samples

D2S441 Sequencing

"A" base insertion = 9.1

 $G \rightarrow A SNP 25/26$ bp upstream of the repeat

True Genotype = 9.1,11

NGM Genotype = 11,11

Primer Changes with ABI Kits

	Primer Set Configuration					
Ampro IK [®] Ni	STR Primers	Amelogenin				
Profiler [®] Kit						
Profiler Plus [®] Kit	Identical primer sequences for all	Identical <u>Amelogenin</u> primer sequences				
COfiler [®] Kit	common loci					
SGM Plus [®] Kit						
Identifiler [®] Kit						
Profiler Plus [®] ID Kit	Inclusion of one additional primer					
SEfiler Plus [™] Kit	for D8S1179					
NGM [™] Kit		Amelogenin primers redesigned				
NGM SElect [™] Kit	SE33 primer sequences redesigned					
MiniFiler [™] Kit	All primers redesigned					

D2S441 and D22S1045 have an additional primer in NGM and NGM SElect

Table 4 from "Development of the AmpF{STR NGM SElect Kit: New Sequence Discoveries and Implications for Genotype Concordance", Forensic News (January 2011)

D19S433 Discordance

Identifiler & NGM = 14,14

T→A 8 bp downstream impacting reverse primer binding with Identifiler (and thus SGM Plus)

D18S51 Null Allele

ZT80731

200

13 2632 15 1865

Prototype_PowerPle D18551

NA E

C→T SNP 172 bp downstream from repeat

D3S1358 Null Allele

 $G \rightarrow C SNP 11 bp downstream from repeat$

Completed Concordance Studies

Kits compared	<u>Samples</u>	<u>Loci compared</u>	<u>Comparisons</u>	<u># Differences</u>	Concordance (%)		
SGM-ID	1436	11	15,796	1	99.994%		
ID-ProPlus	1427	10	14,270	1	99.993%		
SGM-NGM	1436	11	15,796	4	99.975%		
ID-NGM	1449	11	15,939	3	99.981%		
ProPlus-NGM	1427	10	14,270	4	99.972%		
SGM-ESI	1436	11	15,796	5	99.968%		
ProPlus-ESX	1427	7	9,989	3	99.970%		
ESI-NGM	1449	16	23,184	15	99.935%		
ESX-NGM	1449	16	23,184	17	99.927%		
ESI-ESX	1455	17	24,735	3	99.988%		
		TOTAL	172,959	56	99.970%		
			172,959 comparisons 56 differences 99.97% concordance				

Kits (except Identifiler) were kindly provided by **Promega and Applied Biosystems** for concordance testing performed at NIST

Qiagen Investigator Kit Concordance Results

- Results have been obtained for the ESSplex and IDplex kits and shared with Qiagen
- Confirmation DNA sequencing is currently being performed to verify the results

Was there complete concordance with SRM 2391b?

SRM 2391b PCR-Based Profiling Standard

- The first set of samples run with new STR multiplex kits is SRM 2391b
- All new kits tested have been completely concordant with the certified values of all markers for each component
- One exception: MiniFiler
 Genomic 8 with D16S539

SRM 2391b Genomic 8 with D16S539 Identifiler

All allele calls with MiniFiler for CSF1PO, D7S820, D13S317, D18S51, D21S11, FGA, and D16S539 (with the exception noted below) **match previously certified values.**

MiniFiler

D16S539 SRM 2391b Genomic 8 T→C mutation 34 bp downstream of the repeat

mutation

Position of the T \rightarrow C probably affects the reverse primer of Minifiler and is the 3rd base found the 5'end of the Reverse PP16 primer. This could explain the imbalance of the allele seen when using PP16.

Current and Future Concordance Studies

Current Concordance Studies

- SRM 2391c (PCR-based DNA Profiling Standard) is currently being certified for all loci in the new kits (including European loci)
 - Genotype and concordance results have been obtained using ALL available STR multiplex kits, including newly released kits
 - All types are concordant thus far

Future Concordance Studies

- Rapid PCR
 - Vallone, P.M., et al. (2008). Demonstration of rapid multiplex PCR amplification involving 16 genetic loci. *FSI: Genetics, 3, 42-45.*
 - First available rapid PCR kit is **PowerPlex 18D**
- Will there be greater susceptibility to primer binding site mutations with rapid PCR?
 - Concordance testing is STILL important

PP18D Study

New Promega Kit for **Direct & Rapid** PCR

- 15 STRs present in Promega PP16 + 2 Identifiler loci
 - D2S1338 & D19S433
- Initial testing with 50 anonymous blood samples
 - Blood stored on FTA and 903 paper
- Concordance typing performed with PP16HS and Identifiler
- All comparisons concordant except for
 - One sample at D2S1338 (null allele?)
 - PP18D = 17,23
 - Identifiler = 23,23

DNA sequencing is underway to confirm this result

96°C for 2 minutes, then: 94°C for 10 seconds 60°C for 1 minute for 27 cycles, then: ~1.5 h 60°C for 20 minutes 4°C soak

Thermal Cycling Protocol¹

Summary & Final Thoughts

Conclusions

- Concordance testing is valuable when different sets of primers are used to amplify the same markers
- Null alleles and discordant results are reported on STRBase:

http://www.cstl.nist.gov/biotech/strbase/NullAlleles.htm

- NIST plays an important role in concordance testing to aid the community
 - SRM 2391b concordance
 - Several null alleles have been fixed before the final release of new STR multiplex kits

Acknowledgments

<u>NIST Funding</u>: Interagency Agreement 2008-DN-R-121 between the National Institute of Justice and NIST Office of Law Enforcement Standards

NIST Disclaimer: Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Points of view are mine and do not necessarily represent the official position or policies of the US Department of Justice or the National Institute of Standards and Technology.

NIST Team for This Work

John Butler

A special thanks to Applied Biosystems, Promega, and Qiagen for providing the kits used in this study

Dave Duewer Margaret Kline Pete Vallone Contact Info: becky.hill@nist.gov, 301-975-4275