

Categories for STR Markers

Category	Example Repeat Structure	13 CODIS Loci
Simple repeats – contain units of identical length and sequence	(GATA)(GATA)(GATA)	TPOX, CSF1PO, D5S818, D13S317, D16S539
Simple repeats with non-consensus alleles (e.g., TH01 9.3)	(GATA)(<mark>GAT-)</mark> (GATA)	TH01, D18S51, D7S820
Compound repeats – comprise two or more adjacent simple repeats	(GATA)(GATA)(GACA)	VWA, FGA, D3S1358, D8S1179
Complex repeats – contain several repeat blocks of variable unit length	(GATA)(GACA)(CA)(CATA)	D21S11

These categories were first described by Urquhart et al. (1994) Int. J. Legal Med. 107:13-20

How many STRs in the human genome? The efforts of the Human Genome Project have increased knowledge regarding the human genome, and hence there are many more STR loci available now than there were 10 years ago when the 13 CODIS core loci were selected.

- More than 20,000 tetranucleotide STR loci have been characterized in the human genome (Collins et al. An exhaustive DNA micro-satellite map of the human genome using high performance computing. Genomics 2003;62:10-19)
- There may be more than a million STR loci present depending on how they are counted (Ellegren H. Microsatellites: simple sequences with complex evolution. Nature Rev Genet 2004;5:435-445).
- STR sequences account for approximately 3% of the total human genome (Lander et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921).

Butler, J.M. (2006) Genetics and genomics of core STR loci used in human identity testing. J. Forensic Sci. 51(2): 253-265.

Biological "Artifacts" of STR Markers Stutter Products Non-template nucleotide addition Microvariants Tri-allelic patterns Null alleles Mutations Chapter 6 covers these topics in detail

• Stutter peaks make mixture analysis more difficult

http://www.cstl.nist.gov/biotech/strbase/training.htm

lew Section of STRBase (launched to track MiniFiler liscordance and allele dropout frequency): http://www.cstl.nist.gov/biotech/strbase/NullAlleles.htm					
D13S317	Identifiler vs miniplexes	Shift of alleles 10 and 11 due to deletion outside of miniplex assay	Butler et al. (2003), Drabek et al. (2004)		
D16S539	PP1.1 vs PP16 vs COfiler	Loss of alleles with PP1.1 ; fine with PP16 and COfiler	Nelson et al. (2002)		
D8S1179	PP16 vs ProPlus	Loss of alleles 15, 16, 17, and 18 with ProPlus; fine with PP16	Budowle et al. (2001)		
FGA	PP16 vs ProPlus	Loss of allele 22 with ProPlus ; fine with PP16	Budowle and Sprecher (2001)		
D18S51	SGM vs SGM Plus	Loss of alleles 17, 18, 19, and 20 with SGM Plus; fine with SGM	Clayton et al. (2004)		
CSF1PO	PP16 vs COfiler	Loss of allele 14 with COfiler; fine with PP16	Budowle et al. (2001)		
TH01	PP16 vs COfiler	Loss of allele 9 with COfiler; fine with PP16	Budowle et al. (2001)		
D21S11	PP16 vs ProPlus	Loss of allele 32.2 with PP16; fine with ProPlus	Budowle et al. (2001)		

	STR Me	asured Mutatio	n Rates http://	//www.cstl.nist.go	v/biotech/strbase/n	nutation.htm
5	STR Locus	Maternal Meioses (%)	Paternal Meioses (%)	Either Parent	Total Mutations	Rate
	CSF1PO	70/179,353 (0.04)	727/504,342 (0.14)	303	1,100/683,695	0.16%
	FGA	134/238,378 (0.06)	1,481/473,924 (0.31)	495	2,110/712,302	0.30%
ە .	TH01	23/189,478 (0.01)	29/346,518 (0.008)	23	75/535,996	0.01%
2	трох	16/299,186 (0.005)	43/328,067 (0.01)	24	83/627,253	0.01%
ore	VWA	133/400,560 (0.03)	907/646,851 (0.14)	628	1,668/1,047,411	0.16%
	D3S1358	37/244,484 (0.02)	429/336,208 (0.13)	266	732/580,692	0.13%
ă	D5S818	84/316,102 (0.03)	537/468,366 (0.11)	303	924/784,468	0.12%
Q	D7S820	43/334,886 (0.01)	550/461,457 (0.12)	218	811/796,343	0.10%
8	D8S1179	54/237,235 (0.02)	396/264,350 (0.15)	225	675/501,585	0.13%
÷	D13S317	142/348,395 (0.04)	608/435,530 (0.14)	402	1,152/783,925	0.15%
	D16S539	77/300,742 (0.03)	350/317,146 (0.11)	256	683/617,888	0.11%
	D18S51	83/130,206 (0.06)	623/278,098 (0.22)	330	1,036/408,304	0.25%
	D21S11	284/258,795 (0.11)	454/306,198 (0.15)	423	1,161/564,993	0.21%
	Penta D	12/18,701 (0.06)	10/15,088 (0.07)	21	43/33,789	0.13%
	Penta E	22/39,121 (0.06)	58/44,152 (0.13)	55	135/83,273	0.16%
	D2S1338	2/25,271 (0.008)	61/81,960 (0.07)	31	94/107,231	0.09%
	D19S433	22/28,027 (0.08)	16/38,983 (0.04)	37	75/67,010	0.11%
	F13A01	1/10,474 (0.01)	37/65,347 (0.06)	3	41/75,821	0.05%
	FES/FPS	3/18,918 (0.02)	79/149,028 (0.05)	None reported	82/167,946	0.05%
	F13B	2/13,157 (0.02)	8/27,183 (0.03)	1	11/40,340	0.03%
	LPL	0/8,821 (<0.01)	9/16,943 (0.05)	4	13/25,764	0.05%
S	E33 (ACTBP2)	0/330 (<0.30)	330/51,610 (0.64)	None reported	330/51,940	0.64%
		ata used with permission fro	om American Association o	t Blood Banks (AAB	B) 2002 Annual Report	

Summary of STR Mutations Mutations impact paternity testing and missing persons investigations but not forensic direct evidence-suspect matches... Mutations happen and need to be considered Usually 1 in ~1000 meioses Paternal normally higher than maternal VWA, FGA, and D18S51 have highest levels TH01, TPOX, and D16S539 have lowest levels

StrBase Short Tandem Repeat DNA Internet Database http://www.cstl.nist.gov/biotech/strbase						
General Information	Forensic Interest Data	Supplemental Info				
 Intro to STRs 	•FBI CODIS Core Loci	Reference List >2500				
(downloadable PowerPoint)	 DAB Standards 	 Technology Review 				
•STR Fact Sheets	•NIST SRMs 2391	 Addresses for Scientists 				
 Sequence Information 	 Published PCR Primers 	 Links to Other Web Sites 				
 Multiplex STR Kits 	•Y-Chromosome STRs	 DNA Quantitation 				
 Variant Allele Reports 	 Population Data 	•mtDNA				
 Training Slides 	 Validation Studies 	•New STRs				
	•miniSTRs					
New information is added regularly						