

Estimation of Extraction Efficiency by Droplet Digital PCR

Erica L. Romsos & Peter M. Vallone

ail: Erica.Romsos@nist.gov

U.S. National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8314, USA

P391

Forensic DNA typing requires a specific quantity of input DNA (typically 0.5 - 1.0 nanograms) to generate an optimal short tandem repeat (STR) profile. For reference samples, the amount of DNA collected on a standard buccal swab or blood punch is generally more than that which is needed for testing (on the order of hundreds of nanograms (ng)). Typically, extraction efficiency is evaluated by determining the number of samples that produce a full STR profile divided by the total number of samples processed. Less attention has been paid to the amount of DNA unrecovered during the extraction process. The importance of evaluating the theoretical yield versus the functional yield is in cases when the amount of available DNA is low. In these cases, it would be beneficial to obtain an extraction recovery that is closer to the theoretical yield than the functional yield. Evaluating the amount of unrecovered DNA could lead to more efficient methods to recover higher percentages of DNA from the extraction and purification processes.

Extraction efficiency experiments were conducted to evaluate the percentage of DNA recovered through three extraction methods: a manual phenol-chloroform method, the use of the Qiagen EZ1 Advanced XL Extraction robot, and with Qiagen QIAamp DNA Mini extraction kit. Three DNA sources (cells, blood, extracted DNA) were tested at varying known concentrations. Extracted samples were quantified with the use of droplet digital PCR with nuclear DNA assays designed and optimized in-house. Results indicated that the observed recovery value range was lower than many reported extraction efficiency calculations using the number of full STR profiles produced.

What is Extraction Efficiency?

Amount of DNA recovered post-extraction

Original amount of DNA pre-extraction

DNA Sources

DNA was extracted from three sources

Extracted DNA Component A of SRM 2372a: Human DNA Quantitation Standard

Cell suspension in PBS Normal Fibroblast Cells

Whole Blood Freshly collected

Knowing the original amount of DNA in the extraction process allows for the comparison of extraction protocols and methods to accurately determine the efficiency of the extraction process. Digital PCR offers *absolute quantitation* without the need of a calibration standard curve for determining the amount of recovered DNA post extraction.

Extraction Methods Qiagen EZ1 Advanced XL

Materials were extracted according to manufacturer's recommended protocols for the DNA Investigator kit [1]. This kit utilizes silica covered magnetic particles for DNA purification.

50 μ L sample was added to 140 μ L G2 Buffer and 10 μ L Proteinase K and **incubated at 56 °C in a thermomixer for one hour**. Purification on the EZ1 Advanced XL instrument with the DNA Investigator kit. Samples **were eluted in 50 \muL TE⁻⁴**

Qiagen QIAamp Spin Columns

Materials were extracted according to manufacturer's recommended protocols for the QIAamp DNA Mini extraction kit following the Purification from Blood or Body Fluids Spin Protocol [2].

Samples were **normalized to a volume of 200 µL** and added to 200 µL Buffer AL and 20 µL Proteinase K. Samples were **incubated at 56 °C in a thermomixer for ten minutes**. Purification took place in the QIAamp silica spin columns with Qiagen Buffers. Samples were **eluted** Known concentration of 49.8 ng/µL Determined by ddPCR

Known cell count of 1x10⁶ per mL Determined by flow cytometry

Known White Blood Cell Count of 4.6 x10⁶ per mL WBC reported by blood bank

Original DNA input into extraction was determined by the measured starting concentration of each DNA source

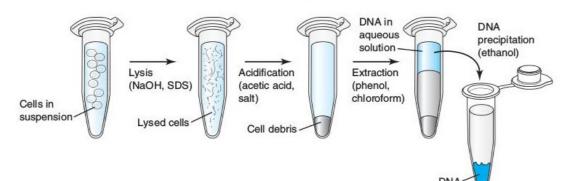
Four DNA input amounts were tested in replicates of five for each extraction method

	Amount (ng)	# of Cells	Uncertainty (± # Cells)	# of Replicates	Total Samples (Per Extraction Method)
Extracted DNA	50	8,333	833	5 por amount	20
	20	3,333	333		
	10	1,667	167	5 per amount	
	5	781	78		
Cells	38	6,250	313	5 per amount	20
	19	3,125	156		
	9	1,563	78		
	5	781	39		
Blood	276	46,000	2,300	5 per emount	20
	138	23,000	1,150		
	28	4,667	233	5 per amount	
	14	2,333	117		

60 Samples per DNA Source

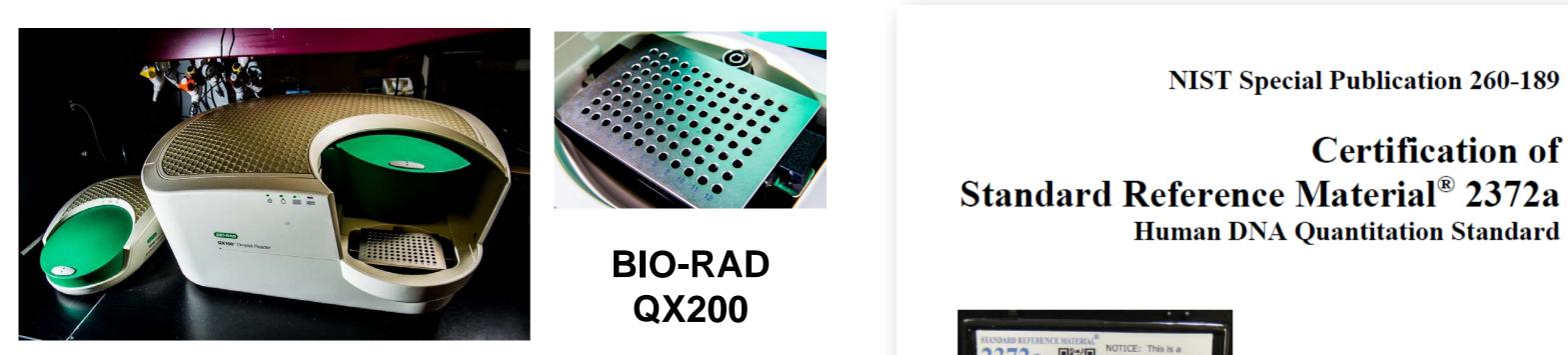
60 Samples per Extraction Method

Extraction Efficiency

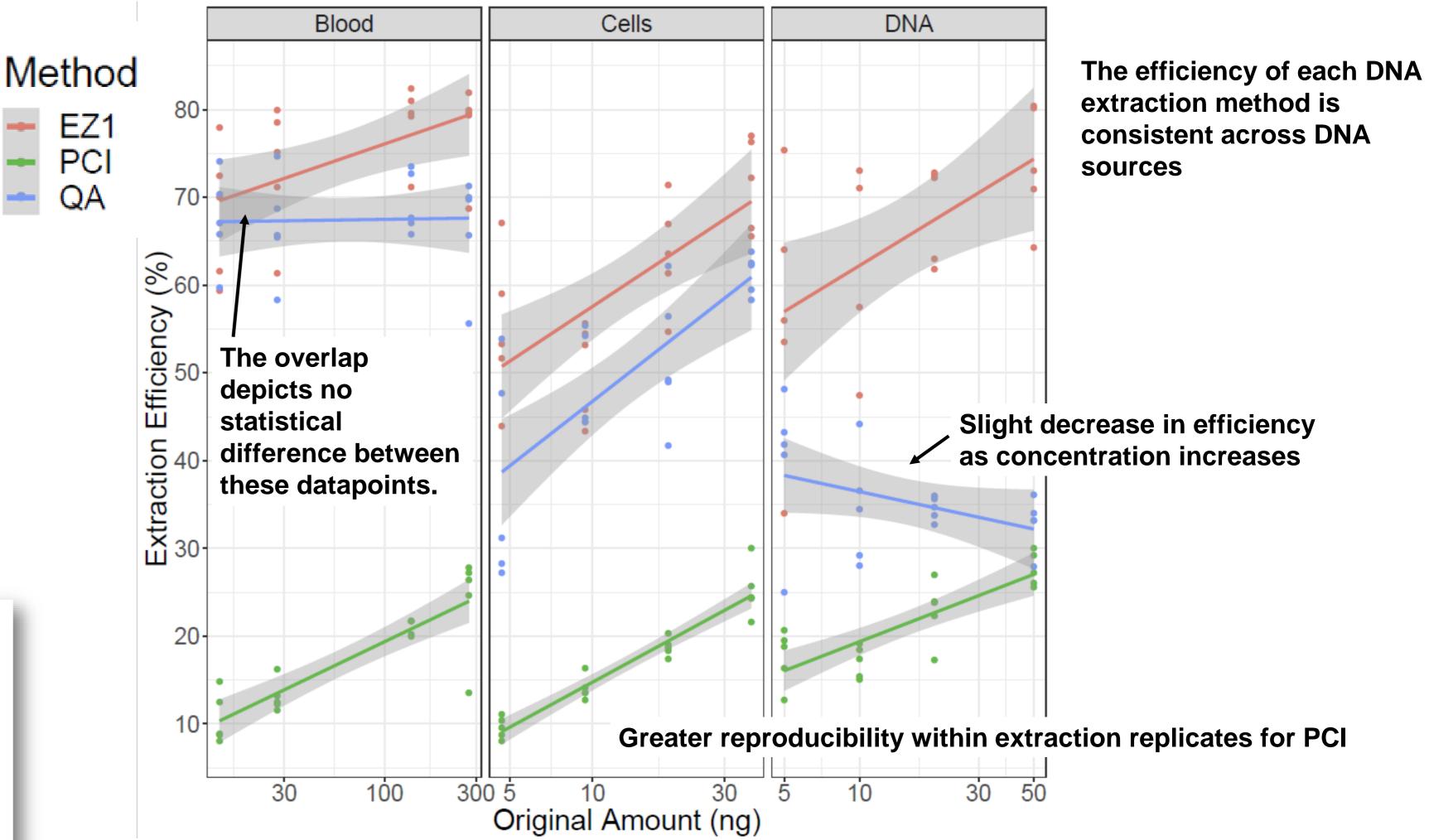

The extraction efficiency is the ratio of the amount of DNA recovered post extraction (quantity) to the original amount of DNA pre-extraction (known). The recovered amount of DNA was determined through absolute quantitation via ddPCR.

in 200 µL AE Buffer.

Phenol-Chloroform (Organic)



100 µL of sample was added to 400 µL Nucleic Lysis Buffer, 4 µL 10 % SDS, and 10 µL Proteinase K and incubated overnight at 37 °C.


After incubation, an equal volume of phenol chloroform (514 μ L) was added and vigorously mixed before **adding solution to a phase lock light tube** (Quantabio, VWR, 10847-800) for complete separation of the two phases. The phase lock light tubes were centrifuged at 14,000 x g for 15 minutes to separate the layers. The aqueous layer was transferred to a fresh tube where 2x the volume of ethanol was added.

After gently mixing the aqueous layer with the ethanol, the tubes were centrifuged at 12,000 x g for 5 minutes. The ethanol was carefully removed from the tube and the DNA was allowed to dry overnight. The DNA was resolubilized with 50 μ L TE⁻⁴.

Droplet Digital PCR

Extraction Efficiency for three methods across three DNA Sources

Each color represents an extraction method for each of the independent DNA sources. The

In ddPCR

- Sample/mastermix is placed in a droplet generator
- Individual droplets in an oil emulsion are formed
- PCR amplification is performed (end point)
- Droplets are read as being positive or negative
- Counting of positive droplets can be converted into sample concentration

2372a Image: Standard Standard human-source material. Human DNA biohazardous material Quantitation Standard human-source material. NUST Store In the dark Notional Institute of standards and Technology Store In the dark U.S. Dependent of Commerce Store In the dark 100 Bureau Drive Commerce 100 Bureau Drive Anternation. Hitp://www.nist.gov/srm Tel. 301-975-2200 ID170228	Erica L. Romsos Margaret C. Kline David L. Duewer Blaza Toman Natalia Farkas
	This publication is available free of charge from: <u>https://doi.org/10.6028/NIST.SP.260-189</u>

ddPCR allows for absolute quantitation without the need of a standard curve or calibrant

What if I don't have access to digital PCR?

Calibration of qPCR standards to NIST Standard Reference Material 2372a: Human DNA Quantitation Standard will help with accuracy of qPCR measurements to assess extraction efficiency. SRM 2372a was certified with ddPCR. This will allow for comparison of qPCR plates over time and reduce bias from commercial qPCR kit standards.

Component	Copy Number (per nL)	DNA (ng/µL)
A (red cap)	15.1 ± 1.5	49.8 ± 5.0
B (white cap)	17.5 ± 1.8	57.8 ± 5.8
C (blue cap)	14.5 ± 1.5	47.9 ± 4.8

References

. Qiagen EZ1 DNA Investigator Handbook. July 2014.	
. QIAamp DNA Mini and Blood Mini Handbook. May 2019.	
. Romsos, E.L., Kline, M.C., Duewer, D.L., Toman, B., Farkas, N. (2018) Natl. Inst. Stand. Technol. Spec. Publ. 260	-189,
OI: 10.6028/NIST.SP.260-189	

SRM 2372a allows for more accurate and precise qPCR measurements and the ability to compare data over time, operators, and qPCR plates.

Erica L. Romsos Margaret C. Kline David L. Duewer Blaza Toman Natalia Farkas available free of charge from: methods with the exception of DNA with the QIAamp spin columns.

The gray bars around each line represents the 95 % confidence interval for each point on the line. Where there is overlap, it there is no statistical difference between the two overlapping points. The efficiency of the extraction method is different between methods, but *similar across DNA sources* for each method.

The EZ1 demonstrates the highest extraction efficiency in this set of experiments. The Organic PCI results are the least variable between extraction replicates.

Conclusions

Different extraction methods yield different efficiencies, but were relatively consistent across different DNA sources. The amount of DNA originally added into the extraction method showed a trend in increased efficiency for increased amounts of DNA for all except DNA and Blood with the QIAamp Mini Spin Columns. Organic extraction demonstrated the lowest efficiency for all of the methods tested, but was the most reproducible among extraction replicates. Additional experiments need to be conducted to confirm the repeatability of these measurements.

Future Work

- Additional operators (Reproducibility and Repeatability)
- Examination of alterations in extraction incubation times
- Addition of carrier RNA for lower DNA inputs
- Use of Microcon Centrifugal Filters for Organic extraction
 Altering elution buffer volume
- Examination of additional extraction chemistries, methodologies, kits, and techniques
- Addition of a swab/substrate to the extraction process

Acknowledgements: We would like to thank Alessandro Tona for growing cells and Dr. Steven Lund (NIST) for his statistical analysis and generation of plots for this work.

A copy of this poster is available at: http://strbase.nist.gov/NISTpub.htm#Presentations

Funding: NIST Special Programs Office: Forensic DNA and the FBI Biometric Center of Excellence Unit: DNA as a Biometric.

Disclaimer: Points of view in this document are those of the authors and do not necessarily represent the official position or policies of the U.S. Department of Commerce. Certain commercial equipment, instruments, and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by NIST, nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose. This work was approved by the NIST Human Subjects Protection Office.