

# The 28<sup>th</sup> Congress of the International Society for Forensic Genetics



PRAGUE, 9 – 13<sup>TH</sup> SEPTEMBER 2019, THE CZECH REPUBLIC, PRAGUE CONGRESS CENTRE

# **Exploring DNA Interpretation Software Using** the PROVEDIt Dataset

# Sarah Riman<sup>1</sup>; Hari Iyer<sup>2</sup>; Peter M. Vallone<sup>1</sup>

<sup>1</sup>Applied Genetics Group, National Institute of Standards and Technology <sup>2</sup>Statistical Design, Analysis, and Modeling Group, National Institute of Standards and Technology



#### **Overview of PROVEDIt database**



#### **Objective of this study**

| Project<br>Research<br>Openness for<br>Validation with<br>Empirical<br>Data     |
|---------------------------------------------------------------------------------|
| STRmix<br>v2.6                                                                  |
| EuroForMix v2.1.0<br>An open-source software for statistical DNA interpretation |

# Interpretation parameters used for each software

| Software          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STRmix v2.6       | <ul> <li><i>N-1, N-2 and N+1</i> stutter peaks were modeled</li> <li><i>Drop-in frequency</i> = 0.0015 and maximum cap = 180 RFU</li> <li><i>Saturation threshold</i> = 30,000 RFU</li> <li><i>MCMC settings:</i> 8 chains of 100,000 burn-in accepts, 50,000 post burn-in accepts per chain</li> <li>Allelic, stutter, and locus-specific amplification efficiency variance were determined using <i>Model Maker</i> where over <i>300 single source profiles</i> of varying quality and quantity were assessed</li> <li>The <u>sub-source LR</u> is reported</li> </ul> |
| EuroForMix v2.1.0 | <ul> <li><i>MLE</i> (Maximum likelihood estimation) approach</li> <li><i>Degradation and stutter models</i> jointly turned on</li> <li>Default parameters, except for a 35 RFU <i>detection threshold</i>, <i>Pr(C)</i> = 0.0015 and λ = 0.018.</li> <li>The <u>MLE based method LR</u> is reported</li> </ul>                                                                                                                                                                                                                                                            |
| Both software     | <ul> <li>Profiles were analyzed using the <i>per dye ATs</i></li> <li><i>NIST 1036-Caucasian</i> allele frequencies</li> <li>θ correction was applied using an F<sub>st</sub>(θ) = 0.01</li> <li>True <i>NOC</i> and <i>same propositions</i> were used in both software</li> </ul>                                                                                                                                                                                                                                                                                       |

J.A. Bright et al., Internal validation of STRmix - A multi laboratory response to PCAST, Forensic science international. Genetics 34 (2018) 11-24.

O. Bleka et al., EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts, Forensic science international. Genetics 21 (2016) 35-44.

#### **Dataset used in our study**

| Kit (PCR cycle no.)                  |                   |                 |                     | <b>CE</b> instrument (injection time) |               |                                |                                      |
|--------------------------------------|-------------------|-----------------|---------------------|---------------------------------------|---------------|--------------------------------|--------------------------------------|
| <b>GlobalFiler (29 cycles)</b>       |                   |                 | <b>3500</b> (15 s)  |                                       |               |                                |                                      |
| Number of<br>contributors            | Mixture<br>ratios | Pristine<br>DNA | Degraded<br>DNase I | Degraded<br>Sonication                | Damaged<br>UV | Inhibited<br><u>Humic</u> Acid | Minor Contributor<br>DNA amount (pg) |
| <b>2P</b><br>(16 unique individuals) | 1:1               | X               | Х                   | Х                                     | Х             | Х                              | 15; 30; 62; 125                      |
|                                      | 1:2               | X               | X                   |                                       |               |                                | 15; 30; 62; 125                      |
|                                      | 1:4               | X               | X                   | X                                     | Х             | Х                              | 15; 30; 62; 125                      |
|                                      | 1:9               | X               | Х                   | Х                                     | Х             | Х                              | 15; 30; 54; 62; 75                   |
|                                      |                   |                 |                     |                                       |               |                                |                                      |
| Sum                                  |                   | 88              | 228                 | 44                                    | 104           | 108                            | 572                                  |
| <b>3P</b><br>(21 unique individuals) | 1:1:1             | Х               | Х                   | Х                                     | х             | Х                              | 15; 30; 62; 125                      |
|                                      | 1:2:1             | X               | Х                   |                                       |               |                                | 15; 30; 62; 125                      |
|                                      | 1:2:2             | X               | Х                   |                                       |               |                                | 15; 30; 62; 125                      |
|                                      | 1:4:1             | X               | X                   | X                                     | Х             | Х                              | 15; 30; 62; 125                      |
|                                      | 1:4:4             | X               | Х                   | Х                                     | Х             | Х                              | 15; 30; 62; 83                       |
|                                      | 1:9:1             | X               | х                   |                                       |               |                                | 15; 30; 45; 62                       |
|                                      | 1:9:9             | X               | X                   |                                       |               |                                | 15; 26; 30; 40                       |
| Sum                                  |                   | 114             | 324                 | 72                                    | 138           | 162                            | 810                                  |

#### **Dataset used in our study**



# Analysis of 2P and 3P mixtures

### Log<sub>10</sub>(*LR*) for 2P and 3P mixtures



Log<sub>10</sub>(*LR*) Distribution by Software, NOC, & Propositions



#### **Receiver operating characteristic (ROC) plots**

9 STRmix 2P EFM 2P STRmix 3P EFM 3P True Positive Rate (%) 99 **Comparison Group** *P-value* 0.74206 2P (STRmix vs EFM) 8 3P (STRmix vs EFM) 0.64155 STRmix (2P vs 3P) 0.02346 EFM (2P vs 3P) 0.04607 85 8 5 15 0 20 10 **False Positive Rate (%)** 

**ROC Plots for 2 & 3 Person Mixtures (STRmix and EFM)** 

# Log<sub>10</sub>(*LR*) Distribution from 2P by **software**, **contributor ratios** and **DNA treatments**

Log<sub>10</sub>(*LR*) Distribution by Software & Mixture Ratios



Log<sub>10</sub>(*LR*) Distribution by Software & Treatment



Log<sub>10</sub>(*LR*) Distribution by Software & Treatment (2P)

# Log<sub>10</sub>(*LR*) Distribution from 3P by **software**, **contributor ratios** and **DNA treatments**

Log<sub>10</sub>(*LR*) Distribution by Software & Mixture Ratios



Log<sub>10</sub>(*LR*) Distribution by Software & Treatment



# **Global overall profile** $Log_{10}(LR)$ from each software

Note for the following plots:  $Log_{10}(LR)$  from each software is shown 'as is' without further designation of the sample type, ratio, treatment, or software run diagnostics (this will be addressed in future work)

**Global profile Log**<sub>10</sub>(*LR*) from 2P and 3P



Note:  $Log_{10}(LR)$  for Hd true tests with values of -  $\infty$  from either software are not shown in these graphs

#### **Global profile Log**<sub>10</sub>(*LR*) from 2P and 3P for **Hp true**



#### Conclusions

- The publicly available PROVEDIt database is a useful resource to understand probabilistic genotyping software
- The effects of software (STRmix and EuroForMix), NOC, mixture ratios, and DNA treatments on LR assessment were examined
- As expected, both software showed high degree of discrimination between Hp TRUE and Hd TRUE distributions across different ratios and treatments for 2 and 3 contributor samples
- When it came to sample to sample profile comparisons the degree of agreement between the two software varied

# **Future work**

- Further investigation is needed to understand the source(s) behind the LR differences (e.g. MCMC settings, diagnostics, number of iterations, stutter models on/off, seed number)
- Analyze **additional samples** at different mixture ratios, treatments, and DNA amounts
- Explore the *4P mixtures*
- Study **deconvolution analysis** of major and minor contributors in both software
- Examine the reported LR values at a **per-locus level**

#### Disclaimer

<u>Points of view in this presentation are mine</u> and do not necessarily represent the official position of the National Institute of Standards and Technology or the U.S. Department of Commerce.

**<u>NIST Disclaimer</u>** Certain commercial products and instruments are identified in order to specify experimental procedures as completely as possible. In no case does such an identification imply a recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that any of these products are necessarily the best available for the purpose.

# **Acknowledgements**

- Pete Vallone (NIST)
- Hari Iyer (NIST)
- Øyvind Bleka (EFM author)
- Zane Kerr (STRmix)
- Judi Morawitz (STRMix)
- Corina Benschop (Netherlands Forensic Institute)



#### Contact: sarah.riman@nist.gov

https://strbase.nist.gov/pub\_pres/2019\_Riman\_ISFG.pdf