

	Data Co	ollection fo Exar	or Sampl nple Car	e Scree ndidate	ening: Auto Sample	osomal STR
-	쓰 쇼	L L	66	4		
	 			ų,	4	<u>.</u>
1	66		ᇥ	뷥	11	<u>ii</u>
	64	ų.	<u>65</u>		di la constante di la constant	
- <u>^</u>		Fully He	eterozygous with	PowerPlex Fu	usion 6C	*Y-STR Markers

Sequencing Forensic STRs in Population Samples

When a match is made in a forensic case, allele frequencies are used to calculate how common or rare the DNA profile is in a given population

Example of length versus sequence-based frequency calculation:

	145240	8					Length	Sequence	
Allele	N	Freq	Sequence Allele	N	Freq		8,9	[ATCT]8, [ATCT]9	
7	1	0.6%	[ATCT]7	1	0.6%]	200	200	
8	23	14.4%	[ATCT]8	23	14.4%		204	204	
0	60	37.5%	[ATCT]9	18	11.3%		2*0.144*0.375	2*0.144*0.113	
5	00	37.370	[ATCT] GTCT [ATCT]7	42	26.3%	Í			
10	53	33.1%	[ATCT]10	53	33.1%		0.108	0.033	
11	21	13.1%	[ATCT]11	21	13.1%				
12	2	1.3%	[ATCT]12	2	1.3%	1	1 in 9.3	1 in 30.7	

Sequencing of 1036 NIST population samples

- Work performed on Illumina FGx ForenSeq kit
- Allele calls were made with Ilumina-UAS and STRait Razor and compared to CE length-based calls (*high confidence*)
- Will include flanking region variation (SNPs, indels)
- Purpose: provide sequence allele frequencies for four U.S. Population groups
 - U.S.: Caucasian, African American, Hispanic, Asian
- The manuscript was submitted in *late May* Focus on the autosomal loci

	£	÷	A	ž.	6	\$	1	fi.	4	ž	ŝ		z.	5	ž.	1	la la	ŝ	6	6 6	ţ.	125	_	f,	1	Ř	1	No.	1	ŝ	6	6	ŝ.
D251338 Length												Deguinal 0351358 Longth								-		4	THO1 Long	ł									
Segurite D151656 Sength									-			Sequence 3652043 Langth											D25441 Lengt										
D21511 Longen												fearra D Junga											D105124										
Tiqueta Penta E Tergiti												ingerne AWA Longer									1		D195433	F									
bearman D18551 Leigh												Segurere 0452408 Langin											Laguro D225104 Lang	15									
Di25391 Gengis							1					D75820 Longet										H	Sepret CSF1PO Jung?	H									
Seguence D135317 Longiti												Jeanne 2165539 Lingt			li								D205483 Lingt							-			
Tequina D851179 Vergiti	E											Segures 2951122 Langth											D175130										
Tenero IGA Longs	-											Segurita 055818 Length						2					TPOX Lengt	H									
	ß	5	10	素	6	1	5	Æ	ď.	2	6		£.	6	ĥ.	fi.	6	fi.	5	5 5	ģ.	6		ť,	ţ,	fi	穒	6	8	\$	£.	5	f.

						Counts				Fr	equenci	ies			
	Locus	Allele	Bracket	All	AfAm	Asian	Cauc	Hisp	All	AfAm	Asian	Cauc	Hisp		
	D75820	6	[TATC]6	1	1	0	0	0	0.0005	0.0015	0.0000	0.0000	0.0000	. N	
	D75820	7	[TATC]7	25	3	0	17	5	0.0121	0.0044	0.0000	0.0235	0.0106		
	D75820	7	[TATC]7	9	5	1	3	0	0.0043	0.0073	0.0052	0.0042	0.0000		
	D75820	8	[TATC]8	197	80	2	74	41	0.0951	0.1170	0.0103	0.1025	0.0865		
ů	D75820	8	[TATC]8	146	76	24	30	16	0.0705	0.1111	0.1237	0.0416	0.0339		
90	D75820	8.1	[TATC]8	1	0	0	1	0	0.0005	0.0000	0.0000	0.0014	0.0000		1
5 g	D75820	9	[TATC]9	205	52	5	111	37	0.0989	0.0760	0.0258	0.1537	0.0784		1
7 8	D75820	9	[TATC]9	45	27	4	10	4	0.0217	0.0395	0.0206	0.0139	0.0085		
52	D75820	9	[TATC]9	2	0	0	0	2	0.0010	0.0000	0.0000	0.0000	0.0042		
50	D75820	10	[TATC]10		unte	and f	00110	ncies	for ea	ch se	nuenc	الد امم	ala 318		
ыe	D75820	10	[TATC]10		unics		cque	1	101 C0	(OL 1	- ucric	cu un	191		
50	D75820	10	[TATC]10			B	/ popu	latio	n and	GIOD	aı.)64		$\langle \rangle$
3 6	D75820	10	[TATC]9 TATT	1	1	0	0	0	0.0005	0.0015	0.0000	0.0000	0.0000		
50	D75820	10.3	[TATC]11	1	0	0	0	1	0.0005	0.0000	0.0000	0.0000	0.0021		
2 X	D75820	11	[TATC]11	443	130	60	132	121	0.2138	0.1901	0.3093	0.1828	0.2564		
9	D75820	11	[TATC]11	37	7	5	16	9	0.0179	0.0102	0.0258	0.0222	0.0191		
Ā	D75820	11	[TATC]11	5	2	3	0	0	0.0024	0.0029	0.0155	0.0000	0.0000		
	D75820	11	[TATC]6 TGTC [TATC]4	1	0	0	0	1	0.0005	0.0000	0.0000	0.0000	0.0021		/
	D75820	12	[TATC]12	230	56	31	86	57	0.1110	0.0819	0.1598	0.1191	0.1208		/
	D75820	12	[TATC]12	50	3	2	29	16	0.0241	0.0044	0.0103	0.0402	0.0339		/
	D75820	12	[TATC]12	2	1	1	0	0	0.0010	0.0015	0.0052	0.0000	0.0000	. /	
	D75820	13	[TATC]13	49	9	5	21	14	0.0236	0.0132	0.0258	0.0291	0.0297		
	D75820	13	[TATC]13	8	1	0	4	3	0.0039	0.0015	0.0000	0.0055	0.0064	. /	
	D75820	14	[TATC]14	2	1	0	1	0	0.0010	0.0015	0.0000	0.0014	0.0000	/	
	D75820	14	[TATC]14	2	0	0	2	0	0.0010	0.0000	0.0000	0.0028	0.0000	. /	
				2072	684	194	722	472	1	1	1	1	1	1	

	Further extension of t rs nun	table includes repean nbers for identified	t region and 5'/3' flanking region SNPs and/or indels	s
			Full Sequence	
Bracket	Flanking Region Variants from GRCh38 (5' to 3')	5' Flank	Repeat Region	3' Flank
TATCIS	rs7782995	TTRATGRANT AND ANALYTATCHATCTUTC	TATCTATCTATCTATCTATC	GTTAGTTCGTTCTAAACTX
TATC]7	rs7782995	TTRATGRART, ANALAMACTRICARTCIGIC	TATCTATCTATCTATCTATCTATC	GTTAGTTCGTTCTAAACTK
TATC]7	rs7789995, rs16887642	TTROTORONTANANANANCTATCANTCTOTC	TATCTATCTATCTATCTATCTATC	GTTAGTTCATTCTAAACTX
TATCIS	rs7783995	TIMITUM AT ACCOUNT ATCATCHING	TATCIAICTATCIAICIAICIAICIAICIAIC	GTTAGTTCGTTCTAAACTA
TATC]8	rs7789995, rs16887642	TTROTORONTANANANANCTATCANTCTOTC	TATCTATCTATCTATCTATCTATCTATC	GTTAGTTCATTCTAAACTX
TATC]8	rs7789995, GRCh38 Chr7:84160204 insA, rs16887642	TAGTGAGATAAAAAAAAAAAAACTATCAATCTGTC	TATCTATCTATCTATCTATCTATCTATC	GTTAGTTCATTCTAAACTX
TATC]9	rs7789995	TTAGTGAGATAAAAAAAAACTATCAATCTGTC	TATCTATCTATCTATCTATCTATCTATCTATCTATC	GTTAGTTCGTTCTAAACTA
TATC]9	rs7789995, rs16887642	TTROTORONTANANANANCTATCANTCTOTC	TATCTATCTATCTATCTATCTATCTATCTATCTATC	GTTAGTTCATTCTAAACTX
TATC]9		TATTTAGTGAGATTAAAAAAACTATCAATCTGTC	TATCTATCTATCTATCTATCTATCTATCTATC	GTTAGTTCGTTCTAAACTA
TATC]10	rs7789995	TTAGTGAGATAAAAAAAAACTATCAATCTGTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTA
TATC]10		TATTTAGTGAGATTAAAAAAACTATCAATCTGTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTK
TATC]10	rs7789995, rs16887642	TTAGTGAGAT, AAAAAAAACTATCAATCTOTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCATTCTAAACTA
TATC]9 TATT	rs7789995	TTAGTGAGATAAAAAAAAACTATCAATCTGTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTA
TATC]11	GRCh38 Chr7:84160204 delA	TTROTGROAT-AAAAAAAACTATCAATCTGTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTX
TATC]11	rs7789995	TTROTORORT, ANDRANASCTATCAATCTOTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTK
TATC]11		TATTTAGTGAGATTAAAAAAACTATCAATCTGTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTA
TATC]11	rs7789995, rs16887642	TTROTORONTANANANANCTATCANTCTOTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCATTCTAAACTX
TATC]6 TGTC [TATC]4	rs7789995	TTAGTGAGAT, AAAAAAAACTATCAATCTOTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTX
TATC]12	rs7789995	TTAGTGAGATAAAAAAAAAACTATCAATCTGTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTA
TATC]12		TATTIAGIGAGATTAAAAAAAACTATCAATCIGIC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTA
TATC]12	rs7789995, rs16887642	TTAGTGAGAT, AAAAAAAACTATCAATCTOTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCATTCTAAACTA
TATC]13	rs7789995	TTAGTGAGATAAAAAAAAACTATCAATCTGTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTA
TATC]13	3	TATTTAGTGAGATTAAAAAAACTATCAATCTOTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTA
TATC]14	rs7789995	TTROTGROAT, AAAAAAAACTATCAATCTOTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTK
TATC]14	3	TATTTAGTGAGATTAAAAAAACTATCAATCTGTC	TATCTATCTATCTATCTATCTATCTATCTATCTATCTAT	GTTAGTTCGTTCTAAACTA

Understand the characteristics of single source DNA profiles generated by the NGS system by evaluating... • Receiver Operating Characteristic (ROC) curves to define where alleles can be clearly separated from noise (attributed to either stutter or random causes) • Zygosity to minimize the risks of misidentifying a heterozygote as a homozygote or a homozygote as heterozygote In this study we evaluated reference samples ONLY We did not test any unknown (crime-stain), mixtures or degraded samples.

							PowerSeq	46GY: La	ci and Ampl	and Amplicon Size		
							Locus Name	Size dapi	Locus Name	Size (Re)		
Evn	orim	onto					0801179	203-255	190391	547-178		
Εлμ	enn	lenus	/				001011	203-273	01218	168-204		
							075820	211-255	015385ia	202-303		
 Pror 	mega P	owers	an Auto) 46GY			00/100	185-229	DEMAN	258-254		
1.0.	nega .	0110.00	-9/1010	400.			0301358	192-245	Dr5380	204-248		
 Illur 	nina M	liSen (v	3 and C	12 samr	iles/rur	1)	11401	235-254	043302	143-164		
man		Jocq (5 unu 5	2 Jump	ics/rui	.,	0130317	209-257	0/5393	224-256		
• Lihr	ary nre	anaratic	n. Trus	sed and	Kana		01408.39	198-246	0/5457	181-197		
- LIDIO	ary pro	paradic	in, nuu	equinu	Kapu		0251334	107-289	015438	202-242		
• Nor	maliza	n bac b	on-nor	malizor	ч		D105433	193-252	015439	204-224		
• NOT	IIIdlizev	u anu n	011-1101	manzeu	L L		188.	202-202	245448	213-255		
							DPOX	196-244	215458	141-165		
	Di	lution Stud	y (pg of ge	nomic DNA	1)		010551	196-277	0/5468	171-199		
Sample 1	500	250	125	60	30	15	050818	191-239	295481	139-184		
Sample 1	300	250	125	00	50	15	FGA	176-258	DM5533	242-284		
Sample 2	500	250	125	60	30	15	Fenta D	110-316	01549	186-230		
Sample 3	500	250	125	60	30	15	Pierta E	179-284	045572	157-217		
ampic 5	500	250	125	00	50	15	Amaioperm	192, 198	D19578	155-213		
	Single	cource sam	oles – amo	lified in trin	licate		0101666	101-208	045635	155-179		
	Single 3	ource samp	nes – ampi	med in crip	licate		025441	388-234	295843	155-210		
							D1051248	135-179	YGADAHA	221-251		
							0125391	202-254				
							02251045	129-178				
							diamond a	1427.478				

ROC-defined analytical threshold

- Is a two dimensional chart which plot the *true positive* versus the *false positive* rates for a given parameter
- Is performed to determine which AT would lead to optimal levels of detection where error rates are minimized
- The true positive rate represents the proportion of true allele sequences known to be present at a specific locus/method/DNA amount
- The false positive rate generated at a locus of interest/method/DNA amount
- represents the proportion of noise sequences falsely classified as true sequences Assumption of a certain distribution is not required with ROCs
- Measures performance of different ATs and gives proportion of false positives and negatives.

ROCs can be used to determine: A global analytical threshold A DNA amount-dependent threshold A DNA amount and locus-dependent threshold

Further work

- Incorporate stutter and accountable artifacts into the ROCs
- Perform further sensitivity experiments as needed
- Create mock casework type samples/mixtures • Derive and test thresholds

 All work presented has been reviewed and approved by the NIST Human Subjects Protections Office.