

Statistical Analysis

It doesn't have to be a Shakespearean tragedy!

In every workshop presented and supported by our NIJ grant

- Participants said they needed more training in
- Mixture analysis
- Statistics related to mixtures

Statistics

\mathfrak{A} Tragedy in 400 ©uadrillion $\mathfrak{A c t s}$

"Though this be madness, yet there is method in't."

- William Shakespeare, Hamlet

Stats Required for Inclusions

SWGDAM Interpretation Guideline 4.1:
"The laboratory must perform statistical analysis in support of any inclusion that is determined to be relevant in the context of a case, irrespective of the number of alleles detected and the quantitative value of the statistical analysis."

Buckleton \& Curran (2008): "There is a considerable aura to DNA evidence. Because of this aura it is vital that weak evidence is correctly represented as weak or not presented at all."

Buckleton, J. and Curran, J. (2008) A discussion of the merits of random man not excluded and likelihood ratios. Forensic Sci. Int. Genet. 2: 343-348.

DAB Recommendations on Statistics

February 23, 2000
Forensic Sci. Comm. 2(3); available on-line at
http://www.fbi.gov/hq/lab/fsc/backissu/july2000/dnastat.htm

"The DAB finds either one or both PE or LR calculations acceptable and strongly recommends that one or both calculations be carried out whenever feasible and a mixture is indicated"

- Probability of exclusion (PE)
- Devlin, B. (1993) Forensic inference from genetic markers. Statistical Methods in Medical Research 2: 241-262.
- Likelihood ratios (LR)
- Evett, I. W. and Weir, B. S. (1998) Interpreting DNA Evidence. Sinauer, Sunderland, Massachusetts.

Statistical Approaches with Mixtures

See Ladd et al. (2001) Croat Med J. 42:244-246

"Exclusionary" Approach

Random Man Not Excluded (RMNE)

Combined Prob. of Inclusion (CPI)

Combined Prob. of Exclusion (CPE)
"Inferred Genotype" Approach

Random Match Probability [modified] (mRMP)

Likelihood Ratio (LR)
"Genotype-centric"

A discussion of the merits of random man not excluded and likelihood ratios

John Buckleton ${ }^{\text {a,* }}$, James Curran ${ }^{\text {b }}$
${ }^{a}$ ESR PB 9202 I, Auckland, New Zealand
${ }^{5}$ Department of Statistics, University of Auckland, PB 92019, Auckland, New Zealand
Received 15 January 2008; received in revised form 29 April 2008; accepted 1 May 2008
We conclude that the two matters that appear to have real force are:
(1) LRs are more difficult to present in court and (2) the RMNE statistic wastes information that should be utilised.

Curran and Buckleton (2010) movena of FORENSIC SCIENCES

PAPER

CRIMINALISTICS; GENERAL

James M. Curran, ${ }^{1}$ M.Sc.(Hons.), Ph.D. and John Buckleton, ${ }^{2}$ Ph.D.

Inclusion Probabilities and Dropout

Created 1000 Two-person Mixtures (Budowle et al. 1999 AfAm freq.).
Created 10,000 "third person" genotypes.
Compared "third person" to mixture data, calculated PI for included loci, ignored discordant alleles.

Curran and Buckleton (2010)

Review of Two Thresholds

2-person Mixture

2-Person Mixture

If CPI/CPE Stats are Used

Since exclusionary statistics cannot adjust for the possibility of dropout, and does not take the number of contributors into account, any loci with alleles below the stochastic threshold cannot be used in the CPI statistic.

If CPI/CPE Stats are Used (ST = 200 RFU)

Shakespeare on Allelic Drop-Out

"Hell is empty and all the devils are here."

- William Shakespeare, The Tempest

http://es.wikipedia.org/wiki/William_Shakespeare

If CPI/CPE Stats are Used

\square Mark Sample for Deletir

\square Mark Sample for Deletir

If CPI/CPE Stats are Used

Can use
D21
Cannot use
$\begin{array}{ll}\text { D8 } & \text { D2 } \\ \text { D7 } & \text { vWA }\end{array}$
TH01 D18
D13
D5
D16
FGA

Impact: discarding 2/3 of the data

If CPI/CPE Stats are Used

- CPI statistics using FBI Caucasian Frequencies
- 1 in 71 Caucasians included
- 98.59% Caucasians excluded

If CPI/CPE Stats are Used (ST = 150 RFU)

The impact of changing thresholds

If mRMP/LR Stats are Used

- Since there is an assumption to the number of contributors, it is possible to use data that falls below the ST.

mRMP - D18S51

If Assume 2 Contributors....

Major
Minor
16,18
14,20
$\mathrm{mRMP}_{\text {minor }}=2 \mathrm{pq}$
$=2 \times f(14) \times f(20)$
$=2 \times(0.1735) \times(0.0255)$
$=0.00884$ or 1 in 113

mRMP - TPOX

If Assume 2 Contributors....

Major 8,8

Minor 11,8 OR 11,11
mRMP $=8,11+11,11$ $m R M P=2 p q+\left(q^{2}+q(1-q) \theta\right)$
$m R M P=2(0.5443)(0.2537)+$ $(0.2537)^{2}+(0.2537)(0.7463)(0.01)$ $=0.3424$ or 1 in 2.9

mRMP/LR

Potential for Drop-out

If mRMP/LR Stats are Used

Can use
D8
D21
D18
D3
D19
TPOX
FGA
CSF

Loci with potential D-out
D7 D2
TH01 vWA
D13
D5
D16

The "2p" Rule

- The " 2 p " rule can be used to statistically account for zygosity ambiguity - i.e. is this single peak below the stochastic threshold the result of a homozygous genotype or the result of a heterozygous genotype with allele drop-out of the sister allele?

" $2 p$ " or not " $2 p$ "... That is the question.

Shakespeare on " 2 p "

"Drink sir, is a great provoker of three things.... nose painting, sleep and urine."

- William Shakespeare, Macbeth

$2 p-$ SWGDAM Guidelines

- 5.2.1.3.1. The formula $2 p$, as described in recommendation 4.1 of NRCII, may be applied to this result.
- 5.2.1.3.2. Instead of using $2 p$, the algebraically identical formulae $2 p-p^{2}$ and $p^{2}+2 p(1-p)$ may be used to address this situation without doublecounting the proportion of homozygotes in the population.

The Likelihood Ratio

- Likelihood Ratio - An evaluation of observing the mixture data under two (or more) alternative hypotheses; in its simplest form $L R=1 /$ RMP

Macbeth/Duncan Profile - TH01

$$
\left.\begin{array}{l}
\text { Major }-7,7 \\
\text { Possible Minor Contributors } \\
7,9.3 \\
9.3,9.3 \\
9.3, ?
\end{array} \quad \text { p }^{2}\right)
$$

Macbeth/Duncan Profile - TH01

$$
\begin{aligned}
& \frac{P\left(E \mid H_{1}\right)}{P\left(E \mid H_{2}\right)}=\frac{V \& S}{V \& U}=\frac{f_{7}{ }^{2}+f_{7}\left(1-f_{7}\right) \theta \& 1}{f_{7}^{2}+f_{7}\left(1-f_{7}\right) \theta \& 2 p} \\
& V=7,7 \\
& U=7,9.3 \\
& \text { 9.3, } 9.3 \\
& \text { 9.3, ? } \\
& \text { 景 } f_{9.3}=0.3054
\end{aligned}
$$

Macbeth/Duncan Profile - TH01

$$
\begin{aligned}
& \frac{P\left(E \mid H_{1}\right)}{P\left(E \mid H_{2}\right)}=\frac{V \& S}{V \& U}=\frac{1}{p^{2}+p(1-p) \theta+2 p q} \\
& V=7,7 \\
& U=7,9.3 \\
& \text { 9.3, } 9.3 \\
& =\frac{1}{f_{9.3}{ }^{2}+f_{9.3}\left(1-f_{9.3}\right) \theta+2 f_{9.3} f_{7}} \\
& \text { Let ST = } 125 \mathrm{RFU} \\
& \text { 度 } \mathrm{f}_{9.3}=0.3054=1 / 0.2007=4.98
\end{aligned}
$$

Macbeth/Duncan Profile - TH01

LR
$\mathrm{ST}=200(2 \mathrm{p}$ is used) $\quad \overline{1.93}$
$\mathrm{ST}=125$ (2pq is used) 4.98

$2 p$ is conservative...

The "2p" Rule

- "This rule arose during the VNTR era. At that time many smaller alleles "ran off the end of the gel" and were not visualised."
- Buckleton and Triggs (2006)

Is the $2 p$ rule always conservative?"

The "2p" Rule

Stain $=a a$
Suspect $=$ aa

$L R=100$
$f(a)=0.10 \quad 1 / p^{2}=100 \quad 1 / 2 p=5$

The "2p" Rule

Stain $=a a$
Suspect $=a b$

ST
$f(a)=0.10 \quad 1 / 2 p=5$
Exclusion

Is there a way forward?

Gill and Buckleton JFS 55: 265-268 (2010)

- "The purpose of the ISFG DNA commission document was to provide a way forward to demonstrate the use of probabilistic models to circumvent the requirement for a threshold and to safeguard the legitimate interests of defendants."

CRIMINALISTICS

Mark W. Perlin, ${ }^{1}$ M.D., Ph.D.; Matthew M. Legler, ${ }^{1}$ B.S.; Cara E. Spencer, ${ }^{1}$ M.S.; Jessica L. Smith, ${ }^{1}$ M.S.; William P. Allan, ${ }^{1}$ M.S.; Jamie L. Belrose, ${ }^{2}$ M.S.; and Barry W. Duceman, ${ }^{3}$ Ph.D.

Validating TrueAllele ${ }^{\circledR}$ DNA Mixture Interpretation*, ${ }^{\dagger}$

- Quantitative computer interpretation using

Markov Chain Monte Carlo testing

- Models peak uncertainty and infers possible genotypes
- Results are presented as the Combined LR

3 Person Mixture

Review of One Replicate (of 50K)

Alternative Explanations of the Data

Determining the LR for D19S433

Suspect $A=14,16.2$

$$
H_{P}=0.967
$$

Probability
Allele Pair Before Conditioning

$14,16.2$
14,14
$13,16.2$
13,14

0.967

$\mathrm{LR}=$

Determining the LR for D19S433

Suspect $A=14,16.2$

$$
H_{P}=0.967
$$

Allele Pair	Probability Before Conditioning	Genotype Frequency	Probability * Genotype Freq
14, 16.2	0.967	0.0120	0.01164
14, 14	0.003	0.0498	0.00013
13, 16.2	0.026	0.0131	0.00034
13, 14	0.001	0.1082	0.00009

0.967
 $L R=-=79.26 \quad H_{D}$
 0.0122

Combined LR = 5.6 Quintillion

			Genotype Probability Distribution			Weighted Likelihood		Likelihood Ratio	
	allele pair	Likelihood	Questioned	Reference	Suspect	Numerator	Denominator	LR	$\log (\mathrm{LR})$
locus	x	I(x)	$\mathrm{q}(\mathrm{x})$	r(x)	$s(x)$	I(x)*s(x)	$l(x) * r(x)$		
CSF1PO	11, 12	0.686	0.778	0.1448	1	0.68615	0.1292	5.31	0.725
D13S317	9, 12	1	1	0.0291	1	0.99952	0.02913	34.301	1.535
D16S539	9, 11	0.985	0.995	0.1238	1	0.98451	0.12188	8.036	0.905
D18S51	13, 17	0.999	1	0.0154	1	0.99915	0.01543	64.677	1.811
D19S433	14, 16.2	0.967	0.948	0.012	1	0.96715	0.01222	79.143	1.898
D21S11	28, 30	0.968	0.98	0.0872	1	0.96809	0.08648	11.194	1.049
D2S1338	23, 24	0.998	1	0.0179	1	0.99831	0.01787	55.866	1.747
D3S1358	15, 17	0.988	0.994	0.1224	1	0.98759	0.12084	8.14	0.911
D5S818	11, 11	0.451	0.394	0.0537	1	0.45103	0.07309	6.17	0.79
D7S820	11, 12	0.984	0.978	0.0356	1	0.98383	0.03617	27.198	1.435
D8S1179	13, 14	0.203	0.9	0.1293	1	0.20267	0.02993	6.771	0.831
FGA	21, 25	0.32	0.356	0.028	1	0.31986	0.01906	16.783	1.225
TH01	7,7	0.887	0.985	0.1739	1	0.88661	0.15588	5.687	0.755
TPOX	8, 8	1	1	0.1375	1	1	0.13746	7.275	0.862
vWA	15, 20	0.998	0.996	0.0057	1	0.99808	0.00569	174.834	2.243

Review of One Replicate (of 50K)

No Conditioning (3 Unknowns)

No Conditioning (3 Unknowns)

locus	allele pair	L	Q	R	5	L*S	L*R	LR	$\log (\mathrm{LR})$
D19S433	13 , 14	0.002	0.146	0.1082			0.00020		
	14.2, 16.2	0.270	0.109	0.0044			0.00118		
	14 , 14	0.002	0.093	0.0498			0.00008		
	13 , 14.2	0.017	0.088	0.0392			0.00068		
	14 , 16.2	0.013	0.081	0.0120	1	0.01295	0.00016		
	13 , 16.2	0.018	0.074	0.0131			0.00023		
	14 , 14.2	0.009	0.067	0.0361			0.00031		
	12 , 14	0.002	0.059	0.0498			0.00012		
	14 , 15	0.001	0.038	0.0343			0.00002		
	13 , 13	0.001	0.034	0.0587			0.00007		
	12,13	0.002	0.029	0.0541			0.00010		
	13 , 15	0.001	0.024	0.0373			0.00002		
	$12,16.2$	0.017	0.021	0.0060			0.00010		
	12 , 14.2	0.013	0.020	0.0180			0.00023		
	14 , 15.2	0.001	0.018	0.0275			0.00003		
	15 , 16	0.002	0.015	0.0006			0.00000		
	13 , 15.2	0.001	0.009	0.0299			0.00003		
	$12,15.2$	0.003	0.009	0.0137			0.00004		
	14 , 16	0.000	0.009	0.0017			0.00000		
	12,12	0.004	0.009	0.0125			0.00004		
	12 , 15	0.001	0.006	0.0172			0.00001		
	13 , 16	0.000	0.006	0.0019			0.00000		
	$13,13.2$	0.001	0.004	0.0261			0.00003		
	13.2, 14	0.001	0.003	0.0240			0.00002		
	13.2, 15	0.001	0.002	0.0083			0.00001		
	14 , 18.2	0.002	0.002	0.0017			0.00000		
	13 , 19.1	0.019	0.002	0.0000			0.00000		
	$12,13.2$	0.002	0.002	0.0120			0.00003		
	14.2, 16	0.001	0.002	0.0006			0.00000		
	12.2, 13	0.001	0.002	0.0168			0.00002		
	$13,18.2$	0.002	0.001	0.0019			0.00000		
	12.2, 14	0.001	0.001	0.0155			0.00001		
	14.2, 14.2	0.004	0.001	0.0065			0.00003		
	15 , 15	0.000	0.001	0.0059			0.00000		
	15 , 15.2	0.000	0.001	0.0095			0.00000		
	14,17	0.001	0.001	0.0000			0.00000		
	$15,16.2$	0.000	0.001	0.0042			0.00000		
	15.2, 15.2	0.001	0.001	0.0038			0.00000		
	1.1, 14.2	0.072	0.001	0.0097			0.00069		
						0.01295	0.00385		. 527

Suspect "A" Genotype

39 probable genotypes

Suspect A $=14,16.2$

$$
H_{P}=0.013
$$

Genotype
Allele Pair Probability Frequency

13,14	0.002	0.1082	
$14.2,16.2$	0.270	0.0044	
14,14	0.002	0.0498	
$13,14.2$	0.017	0.0392 $14,16.2$ 0.013	0.0120 $13,16.2$ 0.018 etc... etc...
	0.0131		
etc...			
	0.013		

Prob *

GenFreq
0.00020
0.00118
0.00008
0.00068
0.00016
0.00023
etc...
$\mathbf{0 . 0 0 3 8 5}$

$$
L R=\frac{}{0.00385}=3.38
$$

No Conditioning

Conditioned on Victim

Profile - Combined $\log ($ LR $)$ Suspect A log(LR) $=18.72$ Suspect B $\log (L R)=19.45$

LR with $\operatorname{Pr}($ Drop-out $)$

Forensic Science International: Genetics 4 (2009) 1-10

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Interpreting low template DNA profiles
David J. Balding ${ }^{\text {a.** }}$, John Buckleton ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Epidemiology and Public Health, Imperial College, St Mary's Campus, Norfolk Place, London W2 IPG, UK ${ }^{\text {b }}$ ESR Private Bag 92021 , Auckland, New Zealand

3 Person Mixture

$$
\begin{aligned}
& V=13,14 \\
& C P=13,14.2 \\
& S=15,16.2
\end{aligned}
$$

$$
\frac{\mathrm{P}\left(\mathrm{E} \mid \mathrm{H}_{1}\right)}{\mathrm{P}\left(\mathrm{E} \mid \mathrm{H}_{2}\right)}
$$

$$
\begin{aligned}
& V=13,14 \\
& C P=13,14.2 \\
& S=15,16.2
\end{aligned}
$$

$$
\operatorname{Pr}(\text { Drop-out })=10 \%
$$

$$
\operatorname{Pr}(\text { Drop-in) }=1 \%
$$

$\operatorname{P}\left(E \| H_{1}\right)=\operatorname{Pr}($ No Drop-out at 16.2) $\operatorname{Pr}($ Drop-out at 15) $\operatorname{Pr}($ No Drop-in $)$

$$
\begin{array}{llll}
= & 0.90 & 0.10 & 0.99
\end{array}
$$

$=0.0891$

3 Person Mixture

$$
\begin{aligned}
& V=13,14 \\
& C P=13,14.2 \\
& S=15,16.2
\end{aligned}
$$

$$
\frac{\mathrm{P}\left(\mathrm{E} \mid \mathrm{H}_{1}\right)}{\mathrm{P}\left(\mathrm{E} \mid \mathrm{H}_{2}\right)}
$$

Keith Inman, Norah Rudin and Kirk Lohmueller have modified the Balding program to incorporate your own data for estimating $\operatorname{Pr}($ Drop-out).

Summary of the Issues

- We need to move away from the interpretation of mixtures from an "allele-centric" point of view.
- Methods to incorporate probability will be necessary as we make this transition and confront issues of low-level profiles with dropout.
- "Just as logic is reasoning applied to truth and falsity, probability is reasoning with uncertainty"
-Dennis Lindley

Summary of the Issues

- The LR is a method to evaluate evidence that can overcome many of the limitations we are facing today.
- This will require (obviously) software solutions... however, we need to better understand and be able to explain the statistics as a community.
- "But, for my own part, it was Greek to me" - William Shakespeare, Julius Caesar
- "We know what we are, but know not what we may be." - William Shakespeare, Hamlet

Summary of the Issues

- Extensive training will be necessary - and a single 8 hour workshop will once a year will not suffice. As Robin stated, these are quick fixes for a larger learning gap.
- "Do, or do not. There is no try."
- Yoda

Thank You

- "I can no other answer make but thanks, and thanks." - William Shakespeare, Twelfth Night

http://es.wikipedia.org/wiki/William_Shakespeare

Robin Cotton Catherine Grgicak Charlotte Word John Butler

NIJ
michael.coble@nist.gov

